scholarly journals Mind-Shift: An Method for Power and Energy Reduction inApplication Mapping onto Network-o-Chip architectures

Author(s):  
yasin asadi

Abstract Network-on-chip (NoC) is an efficient interconnection designing method for solving the limitations of buses in connecting IP cores. Power consumption is one of the most important issues in this area, solving this problem can lead to a more reliable and efficient design of NoC. Besides, there is another problem which is the More’s law is reaching an end. In this paper, we used a new approach, which improves designing points, so we can design NoC architecture more efficiently based on previous designs. Briefly, this method adds one step before the overall change of architecture which tests if the current design can be improved if we change some internal characteristics. For validation, we applied this method by using wire NoC, and changing its bottlenecks, and make them more efficient by using mapping and adding antennas for wireless communication. While this method seems simple at the first sight, but the result can help many designing, which are vital for industries, and technologies like Wireless Sensor Networks (WSN) and Internet of Things (IoT) devices. Briefly, this method can be used in NoC architectures and make them more efficient in a new style for new purposes. The results compared with the basic designing method with the new improved method; power and Energy improvements are respectively 25% and 46% with mapping and wireless improvements and approximately 60% more than traditional NoC in comparison with the basic method in this approach. This method also paves the way for green computing by avoiding producing more chemicals and products from a reusability perspective.

Author(s):  
Shambhavi .

Hundreds of processors and memory cores are implemented on a single substrate called the System on Chip (SoC). The SoC with bus-based architecture has restrictions on the processing speed of the system and as the design becomes complex and the issue of scalability arises. Hence NoC is designed to enhance the scalability, data reliability, and processing speed with low power consumption by decoupling communication from computations [1]. Using NoC the IP cores of SoC are connected through on-chip routers and send data to each other through packet switching. The router is a processing chip that decides the right path for data transmission, hence the efficient design of the router is essential to enhance the performance and throughput of the system [2]. To reduces latency through the switch, the Virtual cut-through mechanism is a packet switching technique, in which the switch starts forwarding a packet as soon as the destination address is processed by header. Hence the present work focuses on a router input-output protocol design with the Virtual Cut-through mechanism for closed-loop communication. Router 1x3 has a single input port and three output ports. The architecture of Router 1x3 with sub-modules such as FIFO, FSM, Synchronizer, and Register is designed analyzed and verified using Verilog, System Verilog language, and Universal Verification Methodology(UVM). And it is also implemented on Xilinx 14.5 IDE with Spartan-6- XC6SLX45 FPGA.


1975 ◽  
Vol 30 (7-8) ◽  
pp. 460-465 ◽  
Author(s):  
M. Moskophidis ◽  
W. Friedrich

Abstract Adenosylcobalamin and several analogs of this corrinoid are prepared by an improved method and separated by an one-step-chromatography on columns of carboxymethylcellulose. Pure water is the eluting agent. The same method is suitable for the preparation of 1,N6-ethenoadenosyl-cobalamin, a corrinoid with fluorescent nucleoside.


2020 ◽  
Vol 29 (01n04) ◽  
pp. 2040012
Author(s):  
Milton Chang ◽  
Santanu Das ◽  
Dale Montrone ◽  
Tapan Chakraborty

This paper proposes a novel scheme for inter-connecting IOT devices with servers. To overcome the drawbacks and other shortcomings of existing IoT network schemes, a new approach to IoT device certification and inter-connecting IoT devices to other network devices (e.g., aggregators and servers) is described. The proposed approach ensures that the overall IoT network is “hardened” against attack and meets the stringent requirements of mission critical applications.


2013 ◽  
Vol 80 (15) ◽  
pp. 33-35
Author(s):  
S. Rajendar ◽  
P. Chandrasekhar ◽  
M. Asha Rani ◽  
B. K. Pradeep Kumar Reddy

2021 ◽  
Vol 11 (4) ◽  
pp. 39
Author(s):  
Amine Saddik ◽  
Rachid Latif ◽  
Abdelhafid El Ouardi

Today’s on-chip systems technology has grounded impressive advances in computing power and energy consumption. The choice of the right architecture depends on the application. In our case, we were studying vegetation monitoring algorithms in precision agriculture. This study presents a system based on a monitoring algorithm for agricultural fields, an electronic architecture based on a CPU-FPGA SoC system and the OpenCL parallel programming paradigm. We focused our study on our own dataset of agricultural fields to validate the results. The fields studied in our case are in the Guelmin-Oued noun region in the south of Morocco. These fields are divided into two areas, with a total surface of 3.44 Ha2 for the first field and 3.73 Ha2 for the second. The images were collected using a DJI-type unmanned aerial vehicle and an RGB camera. Performance evaluation showed that the system could process up to 86 fps versus 12 fps or 20 fps in C/C++ and OpenMP implementations, respectively. Software optimizations have increased the performance to 107 fps, which meets real-time constraints.


Author(s):  
Matteo Sonza Reorda ◽  
Luca Sterpone ◽  
Massimo Violante

Transient faults became an increasing issue in the past few years as smaller geometries of newer, highly miniaturized, silicon manufacturing technologies brought to the mass-market failure mechanisms traditionally bound to niche markets as electronic equipments for avionic, space or nuclear applications. This chapter presents the origin of transient faults, it discusses the propagation mechanism, it outlines models devised to represent them and finally it discusses the state-of-the-art design techniques that can be used to detect and correct transient faults. The concepts of hardware, data and time redundancy are presented, and their implementations to cope with transient faults affecting storage elements, combinational logic and IP-cores (e.g., processor cores) typically found in a System-on-Chip are discussed.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 684
Author(s):  
Yingpeng Liu ◽  
Thanh C. Ho ◽  
Mohammed Baradwan ◽  
Maria Pascual Lopez-Alberca ◽  
Christos Iliopoulos-Tsoutsouvas ◽  
...  

A new approach to synthesize cannabilactones using Suzuki cross-coupling reaction followed by one-step demethylation-cyclization is presented. The two key cannabilactone prototypes AM1710 and AM1714 were obtained selectively in high overall yields and in a lesser number of synthetic steps when compared to our earlier synthesis. The new approach expedited the synthesis of cannabilactone analogs with structural modifications at the four potential pharmacophoric regions.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 556 ◽  
Author(s):  
Shingo Yamaguchi

A new kind of malware called Mirai is spreading like wildfire. Mirai is characterized by targeting Internet of Things (IoT) devices. Since IoT devices are increasing explosively, it is not realistic to manage their vulnerability by human-wave tactics. This paper proposes a new approach that uses a white-hat worm to fight malware. The white-hat worm is an extension of an IoT worm called Hajime and introduces lifespan and secondary infectivity (the ability to infect a device infected by Mirai). The proposed white-hat worm was expressed as a formal model with agent-oriented Petri nets called PN 2 . The model enables us to simulate a battle between the white-hat worm and Mirai. The result of the simulation evaluation shows that (i) the lifespan successfully reduces the worm’s remaining if short; (ii) if the worm has low secondary infectivity, its effect depends on the lifespan; and (iii) if the worm has high secondary infectivity, it is effective without depending on the lifespan.


Sign in / Sign up

Export Citation Format

Share Document