scholarly journals Interactions Between Human-Driven and Autonomous Vehicles on Public Roads

Author(s):  
Amolika Sinha ◽  
Ahmed Radwan ◽  
Vinayak Dixit

Abstract To achieve the level of safety and efficiencies promised by autonomous vehicles (AVs), understanding of interactions between human driven vehicles and AVs is crucial. The limited access to publicly available AV data in the field has been the main source of challenge to explore these questions. Using recently released annotated AV data released by Waymo, we investigate interactions between AVs with Human-driven manual vehicles (MVs) in a public road environment. A scalable methodology is presented to study interactions between AVs and MVs. This research reports two main findings (a) AVs tend to be more conservative than MVs at higher speeds on arterials and at lower speeds on freeways (b) No statistical differences in the mean reaction times between MVs and AVs, however, MVs following MVs were found to have statistically significantly lower variance in reaction times. These findings demonstrate the broader impacts of AVs on traffic flow and capacity.

GeroPsych ◽  
2011 ◽  
Vol 24 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Philippe Rast ◽  
Daniel Zimprich

In order to model within-person (WP) variance in a reaction time task, we applied a mixed location scale model using 335 participants from the second wave of the Zurich Longitudinal Study on Cognitive Aging. The age of the respondents and the performance in another reaction time task were used to explain individual differences in the WP variance. To account for larger variances due to slower reaction times, we also used the average of the predicted individual reaction time (RT) as a predictor for the WP variability. Here, the WP variability was a function of the mean. At the same time, older participants were more variable and those with better performance in another RT task were more consistent in their responses.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1221
Author(s):  
Anum Mushtaq ◽  
Irfan ul Haq ◽  
Wajih un Nabi ◽  
Asifullah Khan ◽  
Omair Shafiq

Connected Autonomous Vehicles (AVs) promise innovative solutions for traffic flow management, especially for congestion mitigation. Vehicle-to-Vehicle (V2V) communication depends on wireless technology where vehicles can communicate with each other about obstacles and make cooperative strategies to avoid these obstacles. Vehicle-to-Infrastructure (V2I) also helps vehicles to make use of infrastructural components to navigate through different paths. This paper proposes an approach based on swarm intelligence for the formation and evolution of platoons to maintain traffic flow during congestion and collision avoidance practices using V2V and V2I communications. In this paper, we present a two level approach to improve traffic flow of AVs. At the first level, we reduce the congestion by forming platoons and study how platooning helps vehicles deal with congestion or obstacles in uncertain situations. We performed experiments based on different challenging scenarios during the platoon’s formation and evolution. At the second level, we incorporate a collision avoidance mechanism using V2V and V2I infrastructures. We used SUMO, Omnet++ with veins for simulations. The results show significant improvement in performance in maintaining traffic flow.


This paper uses the method of kinematic waves, developed in part I, but may be read independently. A functional relationship between flow and concentration for traffic on crowded arterial roads has been postulated for some time, and has experimental backing (§2). From this a theory of the propagation of changes in traffic distribution along these roads may be deduced (§§2, 3). The theory is applied (§4) to the problem of estimating how a ‘hump’, or region of increased concentration, will move along a crowded main road. It is suggested that it will move slightly slower than the mean vehicle speed, and that vehicles passing through it will have to reduce speed rather suddenly (at a ‘shock wave’) on entering it, but can increase speed again only very gradually as they leave it. The hump gradually spreads out along the road, and the time scale of this process is estimated. The behaviour of such a hump on entering a bottleneck, which is too narrow to admit the increased flow, is studied (§5), and methods are obtained for estimating the extent and duration of the resulting hold-up. The theory is applicable principally to traffic behaviour over a long stretch of road, but the paper concludes (§6) with a discussion of its relevance to problems of flow near junctions, including a discussion of the starting flow at a controlled junction. In the introductory sections 1 and 2, we have included some elementary material on the quantitative study of traffic flow for the benefit of scientific readers unfamiliar with the subject.


Author(s):  
Katherine Garcia ◽  
Ian Robertson ◽  
Philip Kortum

The purpose of this study is to compare presentation methods for use in the validation of the Trust in Selfdriving Vehicle Scale (TSDV), a questionnaire designed to assess user trust in self-driving cars. Previous studies have validated trust instruments using traditional videos wherein participants watch a scenario involving an automated system but there are strong concerns about external validity with this approach. We examined four presentation conditions: a flat screen monitor with a traditional video, a flat screen with a 2D 180 video, an Oculus Go VR headset with a 2D 180 video, and an Oculus Go with a 3D VR video. Participants watched eight video scenarios of a self-driving vehicle attempting a right-hand tum at a stop sign and rated their trust in the vehicle shown in the video after each scenario using the TSDV and rated telepresence for the viewing condition. We found a significant interaction between the mean TSDV scores for pedestrian collision and presentation condition. The TSDV mean in the Headset 2D 180 condition was significantly higher than the other three conditions. Additionally, when used to view the scenarios as 3D VR videos, the headset received significantly higher ratings of spatial presence compared to the condition using a flatscreen a 2D video; none of the remaining comparisons were statistically significant. Based on the results it is not recommended that the headset be used for short scenarios because the benefits do not outweigh the costs.


Author(s):  
Isaac Oyeyemi Olayode ◽  
Alessandro Severino ◽  
Tiziana Campisi ◽  
Lagouge Kwanda Tartibu

In the last decades, the Italian road transport system has been characterized by severe and consistent traffic congestion and in particular Rome is one of the Italian cities most affected by this problem. In this study, a LevenbergMarquardt (LM) artificial neural network heuristic model was used to predict the traffic flow of non-autonomous vehicles. Traffic datasets were collected using both inductive loop detectors and video cameras as acquisition systems and selecting some parameters including vehicle speed, time of day, traffic volume and number of vehicles. The model showed a training, test and regression value (R2) of 0.99892, 0.99615 and 0.99714 respectively. The results of this research add to the growing body of literature on traffic flow modelling and help urban planners and traffic managers in terms of the traffic control and the provision of convenient travel routes for pedestrians and motorists.


Author(s):  
Barbara J. Kelso

A legibility study was performed to investigate the effects of scale factors, graduation marks, orientation of scales, and reading conditions on the speed and accuracy of reading moving-tape instruments. Each of 150 Air Force Officers made 150 self-paced readings from slides of hand drawn tape instruments. Error was expressed as the magnitude of deviation of a subjects' verbal response from the set scale value. An analysis of variance was performed on the mean error scores, standard deviations of error, mean reaction times, and standard deviations of reaction times. The results clearly favored the 1 7/8 inch scale factor over the 1 3/8 inch and the 2 3/8 scale factor. The use of 9 graduation marks was superior to either 0, 1, 3, or 4 graduation marks. Reading conditions had little effect on performance. Horizontal scales were read more rapidly but no more accurately than vertical scales.


1974 ◽  
Vol 18 (2) ◽  
pp. 116-116
Author(s):  
Helmut T. Zwahlen

Twelve subjects (20–37 years old) were tested in the laboratory and eleven out of these were also tested in a car in the field, first under a no alcohol condition and then under an alcohol condition (approximately 0.10% BAC). In the laboratory the subjects simple and choice reaction times for two uncertainty modes were measured and their information processing rates (3 bits unsertainty) were determined. In the field the subjects driving skill for driving through a gap with 20 inches total clearance at 20 MPH was measured, as well as their static visual perceptual capabilities and risk acceptance decisions for a 46 feet viewing distance using psychophysical experimental methods. Based upon the driving skill measure (standard deviation of centerline deviations in the gap), the mean of the psychometric visual gap perception function and the mean of the psychometric gap risk acceptance function, the “Safety Distance” and the “Driver Safety Index” (DSI) were obtained. Based upon a statistical analysis of the data we may conclude first that the effects of alcohol (approximately 0.10% BAC) vary widely from one subject to another (slighthly improved performance to highly impaired performance) and that the changes in the group averages of the means and standard deviations of the psychometric visual perception and risk acceptance functions, the driving skill distributions, the “Safety Distances” and the DSI's for the subjects (although all changes in the group averages are in the expected direction) are statistically not significant (α = .05). Second, the group average of the means of the choice reaction times for the subjects increased by 5% under the alcohol condition (statistically significant, α = .05), but more important the group average of the standard deviations of the choice reaction times for the subjects increased by 23% (statistically significant, α = .05). The group average of the information processing rates for the subjects decreased by 3% (statistically not significant, α = .05) under the alcohol condition. A system model in which the system demands on the driver are represented in terms of choice reaction times is used to demonstrate that the increase in performance variability (expressed by the standard deviation of choice reaction times) under the influence of alcohol provides a much better explanation for the higher accident involvement than the historically most frequently used rather small increase in average performance (expressed by the mean of choice reaction times).


2020 ◽  
Author(s):  
Jeff Miller

Contrary to the warning of Miller (1988), Rousselet and Wilcox (2020) argued that it is better to summarize each participant’s single-trial reaction times (RTs) in a given condition with the median than with the mean when comparing the central tendencies of RT distributions across experimental conditions. They acknowledged that median RTs can produce inflated Type I error rates when conditions differ in the number of trials tested, consistent with Miller’s warning, but they showed that the bias responsible for this error rate inflation could be eliminated with a bootstrap bias correction technique. The present simulations extend their analysis by examining the power of bias-corrected medians to detect true experimental effects and by comparing this power with the power of analyses using means and regular medians. Unfortunately, although bias-corrected medians solve the problem of inflated Type I error rates, their power is lower than that of means or regular medians in many realistic situations. In addition, even when conditions do not differ in the number of trials tested, the power of tests (e.g., t-tests) is generally lower using medians rather than means as the summary measures. Thus, the present simulations demonstrate that summary means will often provide the most powerful test for differences between conditions, and they show what aspects of the RT distributions determine the size of the power advantage for means.


Sign in / Sign up

Export Citation Format

Share Document