scholarly journals Associations between a Polymorphism in the rat 5-HT1A Receptor Gene Promoter Region (rs198585630) and Cognitive Alterations Induced by Microwave Exposure

Author(s):  
Hai-Juan Li ◽  
Yu Gao ◽  
Yong Zou ◽  
Si-Mo Qiao ◽  
Wei-Jia Zhi ◽  
...  

Abstract The nervous system is a sensitive target of electromagnetic radiation (EMR). Chronic microwave exposure can induce cognitive deficits, and the 5-HT system is involved in this effect. Genetic polymorphisms lead to individual differences. In this study, we evaluated whether the single-nucleotide polymorphism (SNP) rs198585630 of the 5-HT1A receptor is associated with cognitive alterations in rats after microwave exposure. The transcriptional activity of the 5-HT1A receptor promoter containing the rs198585630 C/T allele was determined in vitro. Electroencephalograms (EEGs), spatial learning and memory, and the mRNA and protein expression of 5-HT1A receptor were evaluated in vivo. We demonstrated that the transcriptional activity of 5-HT1A receptor promoter containing the rs198585630 C allele was higher than that of 5-HT1A receptor promoter containing the T allele. The transcriptional activity of the 5-HT1A receptor promoter was stimulated by 30 mW/cm2 microwave exposure, and the rs198585630 C allele was more sensitive to microwave exposure, as it showed stronger transcriptional activation. Rats carrying the rs198585630 C allele exhibited increased mRNA and protein expression of 5-HT1A receptor and were more susceptible to 30 mW/cm2 microwave exposure, showing cognitive deficits and inhibition of brain electrical activity.

2021 ◽  
Author(s):  
Haijuan Li ◽  
Yu Gao ◽  
Yong Zou ◽  
Simo Qiao ◽  
Weijia Zhi ◽  
...  

Abstract The nervous system is a sensitive target of electromagnetic radiation. Chronic microwave exposure could induce cognitive deficit and 5-HT system was involved in it. Genetic polymorphisms lead to individual differences. In this study, we evaluated whether the single nucleotide polymorphism rs198585630 of 5-HT1A receptor were associated with cognitive alterations of rats after microwave exposure. The transcriptional activity of 5-HT1A receptor promoter including rs198585630 -C/T allele was detected in vitro study. Electroencephalogram, spatial learning and memory functions, the expressions of 5-HT1A receptor mRNA and protein were evaluated in vivo study. We demonstrated that the transcriptional activity of 5-HT1A receptor promoter including rs198585630-C allele was higher than that of T allele. The transcriptional activity of 5-HT1A receptor promoter was stimulated by 30 mW/cm2 microwave exposure, and the rs198585630-C allele was more sensitive to microwave exposure with a stronger transcriptional activation. Rats carrying rs198585630-C allele presented more expressions of 5-HT1A receptor mRNA and protein, and more susceptible to 30 mW/cm2 microwave exposure which showed cognitive deficits and brain electrical activity inhibition.


2021 ◽  
Vol 30 ◽  
pp. 096368972097873
Author(s):  
Jing Li ◽  
Youming Zhu ◽  
Na Li ◽  
Tao Wu ◽  
Xianyu Zheng ◽  
...  

The lack of vasculogenesis often hampers the survivability and integration of newly engineered tissue grafts within the host. Autologous endothelial cells (ECs) are an ideal cell source for neovascularization, but they are limited by their scarcity, lack of proliferative capacity, and donor site morbidity upon isolation. The objective of this study was to determine whether differentiation of human dental pulp stem cells (DPSCs) into the endothelial lineage can be enhanced by recombinant ETV2 overexpression. DPSCs were extracted from fresh dental pulp tissues. ETV2 overexpression in DPSCs was achieved by lentiviral infection and cellular morphological changes were evaluated. The mRNA and protein expression levels of endothelial-specific markers were assessed through quantitative real-time polymerase chain reaction, western blot, immunofluorescence staining, and flow cytometry. The tube formation assay and Matrigel plug assay were also performed to evaluate the angiogenic potential of the ETV2-transduced cells in vitro and in vivo, respectively. Additionally, proteomic analysis was performed to analyze global changes in protein expression following ETV2 overexpression. After lentiviral infection, ETV2-overexpressing DPSCs showed endothelial-like morphology. Compared with control DPSCs, significantly higher mRNA and protein expression levels of endothelial-specific genes, including CD31, VE-Cadherin, VEGFR1, and VEGFR2, were detected in ETV2-overexpressing DPSCs. Moreover, ETV2 overexpression enhanced capillary-like tube formation on Matrigel in vitro, as well as neovascularization in vivo. In addition, comparative proteomic profiling showed that ETV2 overexpression upregulated the expression of vascular endothelial growth factor (VEGF) receptors, which was indicative of increased VEGF signaling. Taken together, our results indicate that ETV2 overexpression significantly enhanced the endothelial differentiation of DPSCs. Thus, this study shows that DPSCs can be a promising candidate cell source for tissue engineering applications.


1990 ◽  
Vol 10 (10) ◽  
pp. 5532-5535 ◽  
Author(s):  
C Abate ◽  
D Luk ◽  
E Gagne ◽  
R G Roeder ◽  
T Curran

The products of c-fos and c-jun (Fos and Jun) function in gene regulation by interacting with the AP-1 binding site. Here we have examined the contribution of Fos and Jun toward transcriptional activity by using Fos and Jun polypeptides purified from Escherichia coli. Fos contained a transcriptional activation domain as well as a region which exerted a negative influence on transcriptional activity in vitro. Moreover, distinct activation domains in both Fos and Jun functioned cooperatively in transcriptional stimulation. Thus, regulation of gene expression by Fos and Jun results from an integration of several functional domains in a bimolecular complex.


2017 ◽  
Vol 42 (4) ◽  
pp. 1469-1480 ◽  
Author(s):  
Xu Lin ◽  
Xintng Zhen ◽  
Haiting Huang ◽  
Haohao Wu ◽  
Yanwu You ◽  
...  

Background/Aims: Transforming growth factor beta 1 (TGF-β1) plays a critical role in the pathogenesis of glomerulosclerosis. The purpose of this study was to examine the effects of inhibition of miR-155 on podocyte injury induced by TGF-β1 and to determine further molecular mediators involved in the effects of miR-155. Methods: Conditionally immortalized podocytes were cultured in vitro and they were divided into four groups: control; TGF-β1 treatment; TGF-β1 with miR-155 knockdown [using antisense oligonucleotides against miR-155 (ASO-miR-155)] and TGF-β1 with negative control antisense oligonucleotides (ASO-NC). Real time RT-PCR and Western blot analysis were employed to determine the mRNA and protein expression of nephrin, desmin and caspase-9, respectively. Flow cytometry was used to examine the apoptotic rate of podocytes and DAPI fluorescent staining was used to determine apoptotic morphology. In addition, we examined the levels of miR-155, TGF-β1, nephrin, desmin and caspase-9 in glomerular tissues of nephropathy induced by intravenous injections of adriamycin in rats. Results: mRNA and protein expression of desmin and caspase-9 was increased in cultured TGF-β1-treated podocytes, whereas nephrin was decreased as compared with the control group. Importantly, miR-155 knockdown significantly attenuated upregulation of desmin and caspase-9, and alleviated impairment of nephrin induced by TGF-β1. Moreover, the number of apoptotic podocytes was increased after exposure to TGF-β1 and this was alleviated after miR-155 knockdown. Knocking down miR-155 also decreased an apoptosis rate of TGF-β1-treated podocytes. Note that negative control antisense oligonucleotides failed to alter an increase of the apoptosis rate in TGF-β1-treated podocytes. Consistent with in vitro results, expression of miR-155, TGF-β1, desmin and caspase-9 was increased and nephrin was decreased in glomerular tissues with nephropathy in vivo experiments. Conclusions: TGF-β1 impairs the protein expression of nephrin and amplifies the protein expression of desmin and caspase -9 via miR-155 signal pathway. Inhibition of miR-155 alleviates these changes in podocytes-treated with TGF-β1 and attenuated apoptosis of podocytes. Our data suggest that miR-155 plays a role in mediating TGF-β1-induced podocyte injury via nephrin, desmin and caspase-9. Results of the current study also indicate that blocking miR-155 signal has a protective effect on podocyte injury. Targeting one or more of these signaling molecules may present new opportunities for treatment and management of podocyte injury observed in glomerulosclerosis.


2013 ◽  
Vol 61 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Anna Nynca ◽  
Dominika Słonina ◽  
Olga Jablońska ◽  
Barbara Kamińska ◽  
Renata Ciereszko

Daidzein, a phytoestrogen present in soybean products used in swine feed, has been demonstrated to affect both reproductive and endocrine functions. The aims of this study were to examine the in vitro effects of daidzein on (1) progesterone (P4) and oestradiol (E2) secretion by porcine luteinised granulosa cells harvested from medium follicles, and (2) the mRNA and protein expression of oestrogen receptors α and β (ERα and ERβ) in these cells. The influence of E2 on P4 secretion and ERα and ERβ expression in the granulosa cells of pigs was also investigated. It was found that daidzein inhibited progesterone secretion by luteinised granulosa cells isolated from medium follicles. In contrast, E2 did not affect progesterone production by these cells. Moreover, daidzein did not alter the granulosal secretion of E2. Both daidzein and E2 decreased mRNA expression of ERα in the cells examined. The expression of ERβ mRNA was not affected by daidzein but was inhibited by E2. ERα protein was not detected while ERβ protein was found in the nuclei of the cells. Daidzein and E2 upregulated the expression of ERβ protein in the cells. In summary, the phytoestrogen daidzein directly affected the porcine ovary by inhibiting progesterone production and increasing ERβ protein expression. Daidzein-induced changes in follicular steroidogenesis and granulosal sensitivity to oestrogens may disturb reproductive processes in pigs.


1998 ◽  
Vol 9 (12) ◽  
pp. 2283-2290
Author(s):  
B Beck-Schimmer ◽  
B Oertli ◽  
T Pasch ◽  
R P Wüthrich

Hyaluronan (HA) is a nonsulfated glycosaminoglycan that accumulates in the renal interstitium in immune-mediated kidney diseases. The functional significance of such HA deposition in the kidney has not been elucidated. Several studies have suggested that HA may exhibit proinflammatory effects. Since chemokines such as monocyte chemoattractant protein-1 (MCP-1) play an important role in the recruitment of leukocytes in renal injury, this study tested whether HA and its fragments could promote MCP-1 production by renal parenchymal cells. Mouse cortical tubular cells were stimulated with fragmented HA or with high molecular weight HA (Healon) in vitro and were examined for MCP-1 expression. Fragmented HA, but not Healon, increased MCP-1 mRNA within 30 min with a peak after 2 h. In addition, a 10-fold increase of MCP-1 protein in the supernatant was found after a 6-h stimulation with fragmented HA. The enhanced MCP-1 mRNA and protein expression in response to HA was dose-dependent between 1 and 100 microg/ml. Upregulation of MCP-1 protein production could be blocked by preincubation with actinomycin D or cycloheximide, suggesting that MCP-1 mRNA and protein expression in response to HA are based on de novo synthesis. The HA-stimulated MCP-1 production was also inhibited with anti-CD44 antibodies, suggesting that MCP-1 is upregulated at least in part by signaling through CD44. In summary, fragmented HA markedly stimulates renal tubular MCP-1 production by mechanisms that involve binding to the HA receptor CD44. It is hypothesized that the accumulation of HA in immune renal injury could participate in the recruitment and activation of inflammatory cells in vivo through production of MCP-1.


Author(s):  
Yong-Xiang Chen ◽  
Chunhua Shi ◽  
Jingti Deng ◽  
Catherine Diao ◽  
Nadia Maarouf ◽  
...  

Objective: Elevated HSP27 (heat shock protein 27) levels predict relative freedom from cardiovascular events. Over-expression or twice daily subcutaneous injections of human HSP27 in ApoE −/− mice reduces blood and plaque cholesterol levels, as well as inflammation and atherosclerotic plaque burden. Antibodies to HSP27 are present in human blood, and the purpose of the current studies is to explore their role. Approach and Results: Blood levels of both HSP27 and anti-HSP27 IgG antibodies are elevated in healthy controls compared with patients with cardiovascular disease. ApoE −/− mice fed a high-fat diet and vaccinated with recombinant HSP25 (rHSP25, murine ortholog) show increased levels of anti-HSP25 IgG antibodies and reductions in plasma cholesterol and atherogenesis. Moreover, rHSP25 vaccination markedly lowered serum amyloid A levels as well as hepatic macrophage abundance and inflammatory cytokine expression. The effects of the HPS25 vaccination on cholesterol metabolism are divergent: increased hepatic LDLR (low-density lipoprotein receptor) mRNA and protein expression and reduced plasma PCSK9 (proprotein convertase subtilisin/kexin type 9) levels—despite no effect on PCSK9 expression. In vitro, the HSP27 immune complex upregulates hepatocyte LDLR mRNA and protein expression independent of intracellular cholesterol levels and increases LDLR promoter activity. The increase in LDLR expression by the HSP27 immune complex is dependent upon activation of the NF-κB (nuclear factor κ light chain enhancer of activated B cells) pathway. Hepatocyte PCSK9 protein levels are reduced after HSP27 immune complex treatment in vitro despite only minor transient effects on gene expression. Conclusions: HSP27 immunotherapy represents a novel means of lowering cholesterol and PCSK9 levels, primarily due to augmentation of LDLR expression and is associated with marked reductions in inflammation.


Rheumatology ◽  
2019 ◽  
Vol 59 (9) ◽  
pp. 2258-2263 ◽  
Author(s):  
Tiago Carvalheiro ◽  
Beatriz Malvar Fernández ◽  
Andrea Ottria ◽  
Barbara Giovannone ◽  
Wioleta Marut ◽  
...  

Abstract Objectives SSc is an autoimmune disease characterized by inflammation, vascular injury and excessive fibrosis in multiple organs. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular glycoprotein that regulates processes involved in SSc pathology, such as inflammation and fibrosis. In vivo and in vitro studies have implicated SPARC in SSc, but it is unclear if the pro-fibrotic effects of SPARC on fibroblasts are a result of intracellular signalling or fibroblast interactions with extracellular SPARC hampering further development of SPARC as a potential therapeutic target. This study aimed to analyse the potential role of exogenous SPARC as a regulator of fibrosis in SSc. Methods Dermal fibroblasts from both healthy controls and SSc patients were stimulated with SPARC alone or in combination with TGF-β1, in the absence or presence of a TGF receptor 1 inhibitor. mRNA and protein expression of extracellular matrix components and other fibrosis-related mediators were measured by quantitative PCR and western blot. Results Exogenous SPARC induced mRNA and protein expression of collagen I, collagen IV, fibronectin 1, TGF-β and SPARC by dermal fibroblasts from SSc patients, but not from healthy controls. Importantly, exogenous SPARC induced the activation of the tyrosine kinase SMAD2 and pro-fibrotic gene expression induced by SPARC in SSc fibroblasts was abrogated by inhibition of TGF-β signalling. Conclusion These results indicate that exogenous SPARC is an important pro-fibrotic mediator contributing to the pathology driving SSc but in a TGF-β dependent manner. Therefore, SPARC could be a promising therapeutic target for reducing fibrosis in SSc patients, even in late states of the disease.


Sign in / Sign up

Export Citation Format

Share Document