scholarly journals CXCL12/CXCR7/β-arrestin1 Biased Signal Promotes Epithelial-to-Mesenchymal Transition of Colorectal Cancer by Repressing Mirnas Through YAP1 Nuclear Translocation

Author(s):  
Mahan Si ◽  
Yujia Song ◽  
Xiaohui Wang ◽  
Dong Wang ◽  
Xiaohui Liu ◽  
...  

Abstract Background: CXCR7 is an atypical chemokine receptor that transmits biased signal independent of G-protein activation. However, whether CXCL12/CXCR7 biased signal activation plays an essential role in colorectal cancer (CRC) progression and metastasis remains obscure. Methods: The functional role of CXCL12/CXCR7 biased signal in CRC was investigated by RNA-sequencing, Transwell assay and in vivo tumor xenografts. YAP1 nuclear translocation and molecular mechanisms were determined by cell transfection, luciferase activity assay, immunofluorescence, coimmunoprecipitation and immunohistochemistry and RT-qPCR analysis.Results: In this study, CXCR7 CXCL12/overexpression promotes Epithelial-to-mesenchymal transition (EMT) and upregulates the expression of stem marker doublecortin-like kinase 1 (DCLK1) in CRC cells with concurrent repression of miR-124-3p and miR-188-5p. Further luciferase assay prove that these miRNAs could regulate EMT by direct targeting vimentin and DCLK1. More importantly, CXCL12/CXCR7/β-arrestin1-mediated biased signal induces YAP1 nuclear translocation, which functions as a transcriptional repressor by interacting with Yin Yang 1 (YY1) and recruiting YY1 to the promoter of miR-124-3p and miR-188-5p. Pharmacological inhibitor of YAP1 recapitulates the anti-tumorigenesis and anti-metastasis effects of YAP1 depletion upon CXCR7 activation in tumor xenografts. Clinically, the expression of CXCR7 was positively correlated with nuclear YAP1 levels and EMT markers. Conclusions: Our findings revealed the novel role of YAP1 nuclear translocation in promoting EMT of CRC by repressing miR-124-3p and miR-188-5p through CXCL12/CXCR7/β-arrestin1 biased signal activation. These findings highlight the potential of targeting YAP1 nuclear translocation in hampering CXCL12/CXCR7 biased signal-induced metastasis of CRC.

2020 ◽  
Vol 124 (1) ◽  
pp. 270-280
Author(s):  
Junhui Yu ◽  
Shan Li ◽  
Zhengshui Xu ◽  
Jing Guo ◽  
Xiaopeng Li ◽  
...  

Abstract Background Emerging evidence suggests the involvement of caudal-related homoeobox transcription factor 2 (CDX2) in tumorigenesis of various cancers. Although CDX2 functions in cancer invasion and metastasis, fewer studies focus on the role of CDX2 during the induction of epithelial–mesenchymal transition (EMT) in colorectal cancer (CRC). Methods Immunohistochemical analysis of CDX2 was performed. A series of in vitro and in vivo experiments were conducted to reveal the role of CDX2 in the invasion and metastasis of CRC. Results CDX2 was downregulated in CRC tissues and reduced CDX2 correlated with poor prognosis. Knockdown of CDX2 promoted colon cancer cell invasion in vitro and facilitated liver metastasis in vivo with inducing EMT phenotypes. Further investigation indicated that CDX2 retarded Akt and GSK-3β phosphorylation, and thereby diminished Snail expression, β-catenin stabilisation and nuclear translocation. The depletion of β-catenin neutralised the regulation of Slug and ZEB1 by CDX2 knockdown. Mechanistically, CDX2 antagonised PI3K/Akt activity in CRC by modulating PTEN expression. CDX2 directly bound to the promoter of PTEN and transactivated its expression. Conclusions Our study first uncovered that CDX2 inhibits EMT and metastasis of CRC by regulation of Snail expression and β-catenin stabilisation via transactivation of PTEN expression.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Yu Tian ◽  
Bo Tang ◽  
Chengye Wang ◽  
Yan Wang ◽  
Jiakai Mao ◽  
...  

AbstractOncogenic ubiquitin-specific protease 22 (USP22) is implicated in a variety of tumours; however, evidence of its role and underlying molecular mechanisms in cholangiocarcinoma (CCA) development remains unknown. We collected paired tumour and adjacent non-tumour tissues from 57 intrahepatic CCA (iCCA) patients and evaluated levels of the USP22 gene and protein by qPCR and immunohistochemistry. Both the mRNA and protein were significantly upregulated, correlated with the malignant invasion and worse OS of iCCA. In cell cultures, USP22 overexpression increased CCA cell proliferation and mobility, and induced epithelial-to-mesenchymal transition (EMT). Upon an interaction, USP22 deubiquitinated and stabilized sirtuin-1 (SIRT1), in conjunction with Akt/ERK activation. In implantation xenografts, USP22 overexpression stimulated tumour growth and metastasis to the lungs of mice. Conversely, the knockdown by USP22 shRNA attenuated the tumour growth and invasiveness in vitro and in vivo. Furthermore, SIRT1 overexpression reversed the USP22 functional deficiency, while the knockdown acetylated TGF-β-activated kinase 1 (TAK1) and Akt. Our present study defines USP22 as a poor prognostic predictor in iCCA that cooperates with SIRT1 and facilitates tumour development.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Victoria Damerell ◽  
Michael S. Pepper ◽  
Sharon Prince

AbstractSarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lin Zhou ◽  
Qing Chen ◽  
Jie Wu ◽  
Jian Yang ◽  
Huancai Yin ◽  
...  

Although colorectal cancer (CRC) is common, there is a paucity of information regarding its molecular pathogenesis. Studies have shown that miRNAs play pivotal roles in the development and progression of CRC. There is a need to further investigate the biological functions of miRNAs in CRC. In particular, it has been reported that miR-942-5p exhibits tumor-suppressive properties. Thus, we analyzed the functional significance of miR-942-5p in CRC and the underlying molecular mechanisms. We found that miR-942-5p was downregulated in CRC tissues and cells. Cell Counting Kit-8, EdU, and colony formation assays revealed that the overexpression of miR-942-5p by mimics inhibited the proliferation of CRC cells. Use of the miR-942-5p inhibitor effectively enhanced the proliferative potential of CRC cells. Further, in vivo xenograft experiments confirmed these results. Increased expression of miR-942-5p suppressed the invasion, migration, and epithelial-mesenchymal transition of CRC cell lines, while decreased miR-942-5p expression had the opposite effect. CCBE1, a secretory molecule for lymphangiogenesis, was established as a downstream target of miR-942-5p, and its expression was inversely correlated with the expression of miR-942-5p in CRC cells. Additionally, cotransfection of the miR-942-5p inhibitor with si-CCBE1 into CRC cells reversed the effects induced by miR-942-5p overexpression. In conclusion, we confirmed that miR-942-5p exerts oncogenic actions in CRC by targeting CCBE1 and identified miR-942-5p as a potential clinical biomarker for CRC diagnosis and therapy.


2019 ◽  
Author(s):  
Peng-Sheng Lai ◽  
Wei-Min Chang ◽  
Ying-Yin Chen ◽  
Yi-Feng Lin ◽  
Hui-Fen Liao ◽  
...  

Abstract Background: A number of microRNAs (miRNAs) have been demonstrated to be associated with the diagnosis, progression and prognosis of colorectal cancer (CRC). However, the function of miRNA-762 (miR-762) in CRC remains unclear, and the molecular mechanisms underlying the effects of miR‑762 in CRC require further investigation. Methods: The circulating miRNAs from BALB/c mice with CRC CT26 cell implantation were assayed by microarray. Then, miR-762 mimic and inhibitor were transfected to CT26 cells for analysis of cell viability, invasion, and epithelial-mesenchymal transition (EMT), cell cycle, and regulatory molecule expression. Human subjects were included for comparison the circulating miR-762 levels in CRC patients and control donors, as well as the patients with and without distant metastasis. Results: The screening for miRNA levels in mice with CRC cell implantation indicated that plasma miR-762 was upregulated. Transfection of miR-762 mimic to CT26 cells increased cell viability, invasion, and EMT, whereas transfection of miR-762 inhibitor decreased the above abilities. Western blot analysis showed that miR-762 mimic transfection upregulated the expression of Wnt-1 and b-catenin, as well as increased the nuclear translocation of b-catenin. Further analysis showed that serum miR-762 levels in CRC patients were higher than in control donors. Among the CRC patients (n = 20), six patients with distant metastasis showed higher serum miR-762 levels than the patients without distant metastasis. Conclusions: Circulating miR-762 could promote CRC disease development and progression through the Wnt/b-catenin signaling. miR-762 might be used as a biomarker for CRC diagnosis and targeted therapy.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lei Lv ◽  
Qiyi Yi ◽  
Ying Yan ◽  
Fengmei Chao ◽  
Ming Li

Spinster homologue 2 (SPNS2), a transporter of S1P (sphingosine-1-phosphate), has been reported to mediate immune response, vascular development, and pathologic processes of diseases such as cancer via S1P signaling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) is elusive. In this study, we disclosed that SPNS2 expression, which was regulated by copy number variation and DNA methylation of its promoter, was dramatically upregulated in colon adenoma and CRC compared to normal tissues. However, its expression was lower in CRC than in colon adenoma, and low expression of SPN2 correlated with advanced T/M/N stage and poor prognosis in CRC. Ectopic expression of SPNS2 inhibited cell proliferation, migration, epithelial–mesenchymal transition (EMT), invasion, and metastasis in CRC cell lines, while silencing SPNS2 had the opposite effects. Meanwhile, measuring the intracellular and extracellular level of S1P after overexpression of SPNS2 pinpointed a S1P-independent model of SPNS2. Mechanically, SPNS2 led to PTEN upregulation and inactivation of Akt. Moreover, AKT inhibitor (MK2206) abrogated SPNS2 knockdown-induced promoting effects on the migration and invasion, while AKT activator (SC79) reversed the repression of migration and invasion by SPNS2 overexpression in CRC cells, confirming the pivotal role of AKT for SPNS2’s function. Collectively, our study demonstrated the suppressor role of SPNS2 during CRC metastasis, providing new insights into the pathology and molecular mechanisms of CRC progression.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jin Wang ◽  
Lingxia Liu

Abstract Background Ovarian cancer (OC), a kind of gynecological cancer, is characterized by high mortality rate, with microRNAs (miRNAs) playing essential roles in it. However, the clinical significance of miRNAs and their molecular mechanisms in OC are mostly unknown. Methods miR-149-3p expression was predicted through Gene Expression Omnibus (GEO) data in OC and confirmed by q-PCR in various OC cells and tissues from patients with different clinical characteristics. Moreover, its roles in terms of proliferation, migration and invasion were measured by CCK-8, colony formation, wound healing and transwell assays in OC cells including cisplatin-resistant and cisplatin-sensitive cells. And its effect on epithelial-mesenchymal transition was also assessed through detecting related protein expression. Additionally, its potential targets were verified by dual luciferase assay and Ago-RIP assay. Finally, its oncogenic functions were explored in vivo. Results In data from GSE79943, GSE131790, and TCGA, miR-149-3p was found to be highly expressed in OC tissues and associated with poor survival. In metastasis and chemoresistant tissues and cisplatin-resistant OC cells, its high expression was confirmed. In terms of tumorigenic effects, miR-149-3p knockdown in cisplatin-resistant OC cells inhibited its cisplatin resistance and other malignant phenotypes, while miR-149-3p overexpression in cisplatin-resistant OC cells led to contrary results. Mechanistically, miR-149-3p targeted 3’UTR of CDKN1A and TIMP2 to function as an oncogenic miRNA. Conclusion In brief, miR-149-3p promoted cisplatin resistance and EMT in OC by downregulating CDKN1A and TIMP2, which might provide a potential therapeutic target for OC treatment.


2020 ◽  
Author(s):  
Qing Song ◽  
Liu Yang ◽  
Zhifen Han ◽  
Xinnan Wu ◽  
Ruixiao Li ◽  
...  

Abstract Background: Tanshinone IIA (Tan IIA) is a major active ingredient extracted from Salvia miltiorrhiza, which has been proved to inhibit metastasis of various cancers including colorectal cancer (CRC). However, the detailed mechanisms of Tan IIA against CRC metastasis are not well explored. Epithelial-to-mesenchymal transition (EMT) exerts an important regulatory role in CRC metastasis, and our previous mechanism studies demonstrated that β-arrestin1 could regulate CRC EMT partly through β-catenin signaling pathway. Therefore, in this work we investigated whether Tan IIA could regulate CRC EMT through β-arrestin1-mediated β-catenin signaling pathway in vivo and in vitro.Methods: The nude mice tail vein metastasis model was established to observe the effect of Tan IIA on CRC lung metastasis in vivo. The lung metastasis was evaluated by living animal imaging and hemaoxylin-eosin staining. The migratory ability of CRC cells in vitro were measured by transwell and wound healing assays. The protein expression and cellular localization of β-arrestin1 and β-catenin were characterized by immunofluorescence staining and western blot. The β-catenin signaling pathway related proteins and EMT associated proteins in CRC cells were detected by western blot and immunohistochemistry. Results: Our results showed that Tan IIA inhibited the lung metastases of CRC cells in vivo and extended the survival time of nude mice. In vitro, Tan IIA increased the expression of E-cadherin, decreased the secretion of Snail, N-cadherin and Vimentin, thus suppressed EMT and the migratory ability of CRC cells. Further study found the mechanism involving in Tan IIA regulating EMT and metastasis, referring to the suppression of β-arrestin1 expression, reduction of β-catenin nuclear localization, thereby the decreased activity of β-catenin signaling. Conclusion: Our data revealed a new mechanism of Tan IIA on the suppression of EMT and metastasis in CRC via β-arrestin1-mediated β-catenin signaling pathway, and provided support for Tan IIA as anti-metastatic agents in CRC.


2018 ◽  
Vol 13 (5) ◽  
pp. 659-668 ◽  
Author(s):  
Sara Lovisa ◽  
Giannicola Genovese ◽  
Silvio Danese

Abstract Intestinal fibrosis is an inevitable complication in patients with inflammatory bowel disease [IBD], occurring in its two major clinical manifestations: ulcerative colitis and Crohn’s disease. Fibrosis represents the final outcome of the host reaction to persistent inflammation, which triggers a prolonged wound healing response resulting in the excessive deposition of extracellular matrix, eventually leading to intestinal dysfunction. The process of epithelial-to-mesenchymal transition [EMT] represents an embryonic program relaunched during wound healing, fibrosis and cancer. Here we discuss the initial observations and the most recent findings highlighting the role of EMT in IBD-associated intestinal fibrosis and fistulae formation. In addition, we briefly review knowledge on the cognate process of endothelial-to-mesenchymal transition [EndMT]. Understanding EMT functionality and the molecular mechanisms underlying the activation of this mesenchymal programme will permit designing new therapeutic strategies to halt the fibrogenic response in the intestine.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Hongli Li ◽  
Qingjie Mu ◽  
Guoxin Zhang ◽  
Zhixin Shen ◽  
Yuanyuan Zhang ◽  
...  

AbstractIncreasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial–mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.


Sign in / Sign up

Export Citation Format

Share Document