scholarly journals Study on the regulatory mechanism of EAF2 in the microenvironment of cervical cancer

Author(s):  
Fan Guo ◽  
Wei na Kong ◽  
Gang Zhao ◽  
Jie Lv ◽  
Jia hui Fan ◽  
...  

Abstract Objective EAF2 plays an important role in transcription elongation and the regulation of gene expression in mammalian cells. EAF2’s depletion has been demonstrated to enhance cell proliferation and greatly increase the risk of cancer. Even so, its expression and prognostic role in cervical cancer (CC) remains controversial. Methods To solve this issue, we comprehensively investigated the role of EAF2 in CC through various databases including ONCOMINE, UALCAN, Kaplan-Meier Plotter and TIMER. Results In all, we found that the EAF2 was highly expressed in CC tissue and was significantly correlated with better patient survival. Among the CNAs, amplification was the dominant alteration. Then the co-expression profile and enrichment analysis of EAF2 were related to the potential signaling pathways. The function of genes such as Kinase LYN, mi-RNA133A-133B and transcription factor OCT1 were also enriched in CC. The positively relation EAF2 expression to 6 immune cells revealed that EAF2 expression may affect development of patients with CC partially due to immune infiltration. Conclusions Taken together, our data suggest that EAF2 might be a potential prognostic marker and therapeutic target for CC patients.

2020 ◽  
Author(s):  
Wei na Kong ◽  
Fan Guo ◽  
Yang chun Feng ◽  
Jie Lv ◽  
Jia hui Fan ◽  
...  

Abstract Background: ELL-associated factor 2 (EAF2) plays an important role in transcription elongation and the regulation of gene expression in both mammalian cells as well as in lower eukaryotes concurrent . EAF2’s depletion has been demonstrated to enhance cell proliferation and greatly increase the risk of cancer. However, little is known about the expression and function of EAF2 in cervical cancer (CC) progression. Here, we comprehensively analyzed the expression of EAF2 and its clinical outcome in CC using publicly available cancer gene expression and patient survival data through various databases.Methods: We examined the differences of EAF2 expression between cancers and their normal tissues using the Oncomine, Gene expression Profiling Interactive Analysis 2 (GEPIA2), the Gene Expression across Normal and Tumor tissue 2 (GENT2) database and UALCAN databases. EAF2 expression was investigated from immunohistochemistry images using the Human Protein Atlas database. Copy number alterations (CNAs) and mutations of EAF2 were analyzed using cBioPortal. Kaplan–Meier analysis was used to predict the survival of EAF2 in CC. Analysis of the co-expression profile of EAF2 and the enrichment pathway of co-expression with EAF2 were revealed using LinkedOmics to explore the predicted signaling pathways. GeneMANIA visualize the gene networks and predict function of genes that GSEA identified as being enriched in CC: kinase LYN, mi-RNA133A, 133B and transcription factor OCT1. Results: We found that the expression of EAF2 decreased with the development of CC and significant upregulation of EAF2 is positively correlated with the overall survival (OS) of CC patients. The decrease of EAF2 gene expression may be partly due to promoter methylation and CNAs with the development of CC. Besides, EAF2 expression might be strongly positively correlated with the expression of IQCB1, ILDR1 and ASTE1, and may contribute to a signaling pathway in CC. Conclusion: Decreased EAF2 expression has negative clinical significance in the development of CC through the regulation of methylation, CNAs and related pathways. This suggests that EAF2 has potential as a therapeutic target for CC. Keywords: EAF2; cervical cancer; patient survival; clinical outcomes; cancer progression; multiomics analysis


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanpeng Ding ◽  
Nuomin Liu ◽  
Mengge Chen ◽  
Yulian Xu ◽  
Sha Fang ◽  
...  

Abstract Background BLCA is a common cancer worldwide, and it is both aggressive and fatal. Immunotherapy (ICT) has achieved an excellent curative effect in BLCA; however, only some BLCA patients can benefit from ICT. MT1L is a pseudogene, and a previous study suggested that MT1L can be used as an indicator of prognosis in colorectal cancer. However, the role of MT1L in BLCA has not yet been determined. Methods Data were collected from TCGA, and logistic regression, Kaplan-Meier plotter, and multivariate Cox analysis were performed to demonstrate the correlation between the pseudogene MT1L and the prognosis of BLCA. To identify the association of MT1L with tumor-infiltrating immune cells, TIMER and TISIDB were utilized. Additionally, GSEA was performed to elucidate the potential biological function. Results The expression of MT1L was decreased in BLCA. Additionally, MT1L was positively correlated with immune cells, such as Tregs (ρ = 0.708) and MDSCs (ρ = 0.664). We also confirmed that MT1L is related to typical markers of immune cells, such as PD-1 and CTLA-4. In addition, a high MT1L expression level was associated with the advanced T and N and high grade in BLCA. Increased expression of MT1L was significantly associated with shorter OS times of BLCA patients (p < 0.05). Multivariate Cox analysis revealed that MT1L expression could be an independent prognostic factor in BLCA. Conclusion Collectively, our findings demonstrated that the pseudogene MT1L regulates the immune microenvironment, correlates with poor survival, and is an independent prognostic biomarker in BLCA.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yang-Jie Wu ◽  
Ai-Tao Nai ◽  
Gui-Cheng He ◽  
Fei Xiao ◽  
Zhi-Min Li ◽  
...  

Abstract Background Dihydropyrimidinase like 2 (DPYSL2) has been linked to tumor metastasis. However, the function of DPSY2L in lung adenocarcinoma (LUAD) is yet to be explored. Methods Herein, we assessed DPYSL2 expression in various tumor types via online databases such as Oncomine and Tumor Immune Estimation Resource (TIMER). Further, we verified the low protein and mRNA expressions of DPYSL2 in LUAD via the ULCAN, The TCGA and GEPIA databases. We applied the ROC curve to examine the role of DPYSL2 in diagnosis. The prognostic significance of DPYSL2 was established through the Kaplan–Meier plotter and the Cox analyses (univariate and multivariate). TIMER was used to explore DPYSL2 expression and its connection to immune infiltrated cells. Through Gene Set Enrichment Analysis, the possible mechanism of DPYSL2 in LUAD was investigated. Results In this study, database analysis revealed lower DPYSL2 expression in LUAD than in normal tissues. The ROC curve suggested that expression of DPYSL2 had high diagnostic efficiency in LUAD. The DPYSL2 expression had an association with the survival time of LUAD patients in the Kaplan–Meier plotter and the Cox analyses. The results from TIMER depicted a markedly positive correlation of DPYSL2 expression with immune cells infiltrated in LUAD, such as macrophages, dendritic cells, CD4+ T cells, and neutrophils. Additionally, many gene markers for the immune system had similar positive correlations in the TIMER analysis. In Gene Set Enrichment Analysis, six immune-related signaling pathways were associated with DPYSL2. Conclusions In summary, DPYSL2 is a novel biomarker with diagnostic and prognostic potential for LUAD as well as an immunotherapy target. Highlights Expression of DPYSL2 was considerably lower in LUAD than in normal tissues. Investigation of multiple databases showed a high diagnostic value of DPYSL2 in LUAD. DPYSL2 can independently predict the LUAD outcomes. Immune-related mechanisms may be potential ways for DPYSL2 to play a role in LUAD.


2019 ◽  
Author(s):  
rui kong ◽  
Nan Wang ◽  
Wei Han ◽  
Yuejuan Zheng ◽  
Jie Lu

Abstract Background: In recent years, long non-coding RNAs (lncRNAs) are emerging as crucial regulators in the immunological process of liver hepatocellular carcinoma (LIHC). Increasing studies have found that some lncRNAs could be used as a diagnostic or therapeutic target for clinical management, but little research has investigated the role of immune-related lncRNA in tumor prognosis. In this study, we aimed to develop an immune lncRNA signature for the precise diagnosis and prognosis of liver hepatocellular carcinoma. Methods: Gene expression profiles of LIHC samples obtained from TCGA were screened for immune-related genes using two reference gene sets. The optimal immune-related lncRNA signature was built via correlational analysis, univariate and multivariate cox analysis. Then the Kaplan-Meier plot, ROC curve, clinical analysis, gene set enrichment analysis, and principal component analysis were carried out to evaluate the capability of immune lncRNA signature as a prognostic indicator. Results: Six long non-coding RNA MSC−AS1, AC009005.1, AL117336.3, AL031985.3, AL365203.2, AC099850.3 were identified via correlation analysis and cox regression analysis considering their interactions with immune genes. Next, tumor samples were separated into two risk groups by the signature with different clinical outcomes. Stratification analysis showed the prognostic ability of this signature acted as an independent factor. The AUC value of ROC curve was 0.779. The Kaplan-Meier method was used in survival analysis and results showed a statistical difference between the two risk groups. The predictive performance of this signature was validated by principal component analysis (PCA). Data from gene set enrichment analysis (GSEA) further unveiled several potential biological processes of these biomarkers may involve in. Conclusion: In summary, the study demonstrated the potential role of the six-lncRNA signature served as an independent prognostic factor for LIHC patients.


RNA ◽  
2007 ◽  
Vol 13 (8) ◽  
pp. 1375-1383 ◽  
Author(s):  
J. Zhang ◽  
C. Wang ◽  
N. Ke ◽  
J. Bliesath ◽  
J. Chionis ◽  
...  

2021 ◽  
Author(s):  
Xinyu Liu ◽  
Yuqi Tang ◽  
Shuang Wang ◽  
Shutong Liu ◽  
Chenglin Li ◽  
...  

Abstract Background Cyclin B (CCNB) family plays key roles in the cell cycle, cell division and proliferation. Three members of CCNB family have been identified, including CCNB1, CCNB2 and CCNB3. Many studies have explored the roles of CCNBs in the tumorigenesis and pathogenesis of different types of cancer. However, the expression level, function, and prognostic value of CCNBs in breast caner (BC) are still unclear.Methods We explored the specific alterations of CCNBs in BC and predicted their prognostic value for BC patients. Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, STRING, Database for Annotation,Visualization and Integrated Discovery (DAVID) databases were used for above analyses.Results We found that CCNB1 amd CCNB2 were significantly overexpressed in BC compared with normal samples, but not CCNB3. Survival analysis showed that upregulated CCNB1 and CCNB2 expression levels were associated with poor prognosis of BC patients, while high CCNB3 expression was related to good prognosis for BC patients. Furthermore, gene oncology (GO) enrichment analysis was performed to reveal the functions of CCNBs and the interacted genes related to CCNBs. In addition, hsa-miR-139-5p and has-miR-944 were identified to be potentially involved in the regulation of CCNB1.Conclusion Our study suggests that CCNB1, CCNB2 are potential targets of precise therapy for BC patients and that CCNB3 is a novel biomarker for the good prognosis of BC patients.


2021 ◽  
Author(s):  
Chujia Chen ◽  
Zhiyong Yang ◽  
Qiuchan Zhao ◽  
Bangming Xu ◽  
Donglin Cao

Abstract Background Ovarian cancer (OC) is one of the most common malignant gynecological tumors, but its pathogenesis is unclear. Bromine domain protein 4 (BRD4) is involved in the malignant transformation of cells, as well as the invasion and metastasis of tumor cells. The biological role of BRD4 in ovarian cancer is yet to be determined. Methods The differential expression of BRD4 in OC and corresponding normal tissues was evaluated by exploring the Tumor Immune Assessment Resources (TIMER) and the Oncomine database. The correlation between the expression level of BRD4 and the prognosis of OC patients was evaluated using the Kaplan-Meier Plotter database. Using TIMER, we further studied the correlation between BRD4 and tumor immune cell infiltration. Results The expression of BRD4 was significantly higher in patients with OC, and high BRD4 expression was closely related to low overall survival rate. The BRD4 expression was associated with the levels of immune markers of macrophages, dendritic cells, neutrophils, and various effector T cells. Taken together, these findings show that BRD4 expression is significantly related to immune infiltration in OC and suggest that BRD4 might play an important role in the immune evasion of OC cells. Conclusion The expression level of BRD4 in OC tissues is significantly upregulated, and its high expression is significantly associated with poor prognosis of patients and is closely related to tumor immune infiltration. These results suggest that BRD4 can be used as a prognostic marker and a marker of immune infiltration in OC.


2020 ◽  
Author(s):  
tao ming Shao ◽  
zhi yang Hu ◽  
wen wei Li ◽  
long yun Pan

Abstract Purpose. Breast cancer (BC) has a poor prognosis when brain metastases (BM) occur, and the treatment effect is limited. In this study, we aim to identify representative candidate biomarkers for clinical prognosis of patients with BM and explore the mechanisms underlying the progression of BC.Methods. Herein, we examined the Microarray datasets (GSE125989) obtained from the Gene Expression Omnibus database to find the target genes in BC patients with BM. We employed the GEO2R tool to filter the differentially expressed genes (DEGs) that participate in primary BC and BC with BM. Subsequently, using the DAVID tool, we conducted an enrichment analysis with the screened DEGs based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) functional annotation. The STRING database was employed to analyze the protein-protein interactions of the DEGs and visualized using Cytoscape software. Lastly, the Kaplan-Meier plotter database was employed to determine the prognostic potential of hub genes in BC.Results. We screened out 311 upregulated DEGs and 104 downregulated DEGs. The enrichment analyses revealed that all the DEGs were` enriched in the biological process of extracellular matrix organization, cell adhesion, proteolysis, collagen catabolic process and immune response. The significant enrichment pathways were focal adhesion, protein absorption and digestion, ECM-receptor interaction, PI3K-Akt signalling pathway, and Pathways in cancer. The top ten hub nodes screened out included FN1, VEGFA, COL1A1, MMP2, COL3A1, COL1A2, POSTN, DCN, BGN and LOX. The Kaplan-Meier plotter results showed that the three hub genes (FN1, VEGFA and DCN) are candidate biomarkers for clinical prognosis of patients with BM.Conclusion. we identified seven genes related to poor prognosis in BCBM. FN1, VEGFA and DCN can be considered as potential prognostic markers for BCBM. Meantime, COL1A1, POSTN, BGN and LOX may be linked to the distant transformation of BC.


2020 ◽  
Author(s):  
Xuehui Peng ◽  
Yonggang He ◽  
Xiaobing Huang ◽  
Nan You ◽  
Huiying Gu ◽  
...  

Abstract Background: The tumorigenesis and development of hepatocellular carcinoma (HCC) is a process involving multiple factors. The COMMDs family proteins were reported to play important roles in various disease and cancers including HCC. We previously found COMMD7 acted as a HCC-promotion factor; however, further understanding on COMMD7 was needed. We conducted these bioinformatics analysis for the purpose of comprehensive understanding of the functional role of COMMD7 in HCC.Methods: The bioinformatics analysis of COMMD7 were launched by online platforms including KEGG, GEPIA, cBioportal, Gene Ontology and The Kaplan-Meier plotter. Data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were downloaded, and the data analysis and processing were conducted by RStudio (version 1.3.959) software.Results: The expression profile results of COMMD7 in TCGA and GTEx database suggested that COMMD7 expressed highly in liver tumor tissues and positively related with poorer prognosis (p<0.01); COMMD7 also contributed to the early development of HCC as its higher expression resulted in progression from stage I to stage III (p<0.01). Based on our previous studies, COMMD7 may target NF-κB signaling and CXCL10 to enhance the proliferation of hepatoma cells so that promoting the development of HCC. Conclusions:This study updates the current studies about the newly recognized roles of COMMD7 in the progression of HCC, summarizing the research progress and prospects of COMMD7 comprehensively, offering an outlook for the future investigation and targeted therapy of HCC.


Vaccine ◽  
2009 ◽  
Vol 27 (22) ◽  
pp. 2994-3006 ◽  
Author(s):  
Ningjie Hu ◽  
Richard Yu ◽  
Cecilia Shikuma ◽  
Bruce Shiramizu ◽  
Mario A. Ostrwoski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document