scholarly journals Study on the Mechanism of Tiaogan Yunpi Decoction in Treating Diarrhea-Irritable Bowel Syndrome Based on Network Pharmacology

2020 ◽  
Author(s):  
Jing Yan ◽  
Fei Ge ◽  
Zhi-wei Miao ◽  
Li-na Liu ◽  
Jun Lu ◽  
...  

Abstract Tiaogan Yunpi Decoction (TGYPD) is a clinical experience commonly used by tutors to treat diarrhea-irritable bowel syndrome (D-IBS); it has been commonly employed to treat ulcerative colitis and chemotherapy-induced intestinal mucositis. However, the mechanism of TGYPD in D-IBS treatment remains unclear. In the present study, the potential mechanism of TGYPD for irritable bowel syndrome was tested by network pharmacology combined with the IBS rat model. On the whole, 56 active ingredients were screened out, and 238 assessed targets were identified; 1934 known disease targets regarding the occurrence and development of irritable bowel syndrome were successfully searched from the disease database. GO biological processes primarily impact cytokine receptor binding, transcription factor activity, cytokine activity, antioxidant activity, biosynthesis regulation, cell cycle regulation and other cellular active sites of irritable bowel syndrome. Besides, the mentioned processes are involved in AGE- RAGE signaling pathway, TNF and IL-17 signaling pathway, Toll-like receptor (TLRs) signaling pathway, multiple cancer signaling pathways, and viral key signaling pathways of infection, hepatitis and endocrine resistance. As reported by the protein interaction network (PPI), IL-6, CXCL8, VEGFR, JUN, MAPK3 and AKT1 are likely to act as the critical targets for TGYPD to treat IBS. Moreover, in the model of IBS-D rats, TGYPD is capable of significantly reducing stool Bristol type and AWR scores, as well as effectively decreasing TNF-αand IFN-γ. As revealed from colon pathological section, TGYPD can relieve intestinal damage and mitigate intestinal mucosal immune inflammation. As suggested from the results of the Western blotting assay, TGYPD is capable of suppressing the expression of TLR4-MYD88-NF-kB signaling pathway in intestines. In brief, the results achieved in this study suggest that TGYPD can significantly mitigate immune inflammation and protect against intestinal mucosal barrier in the intestines of the IBS-D rat model. This study provides novel insights that can be referenced by other TCM studies.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Meng Meng ◽  
Chen Bai ◽  
Bo Wan ◽  
Luqing Zhao ◽  
Zhe Li ◽  
...  

Background and Objective. Irritable bowel syndrome (IBS) is a prevalent disorder of the gastrointestinal system with complex pathogenesis. Shenling Baizhu powder (SLBZP) is a Chinese herbal compound with multicomponent and multitarget characteristics. Increasing volumes of evidence demonstrate that it has a notable therapeutic impact on IBS. This study therefore is aimed at exploring the potential effective components of SLBZP and their mechanisms in IBS treatment utilizing network pharmacology. Methods. Metabolomics was used to detect the secondary metabolites in SLBZP; the target protein was acquired by target fishing according to the compound’s structure. The SymMap database was used to search herbal medicines for the target protein. The target gene of IBS gave rise to the common gene protein which is the potential target of SLBZP in IBS therapy. The interactions between target proteins were analyzed in a STRING database, the protein relationship network was analyzed using Cytoscape software, and the Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the core target gene group was carried out in a DAVID database in order to construct the “compound-traditional Chinese medicine/molecule-target-pathway” network. Molecular docking was used to verify the core protein and its related small molecular compounds. Result. There were 129 types of secondary metabolites in SLBZP. 80 target proteins of these metabolites were potential core targets for IBS treatment including acetylcholinesterase (AChE), arachidonate-5-lipoxygenase (ALOX5), B-cell lymphoma-2 (BCL2), recombinant cyclin D1 (CCND1), and catenin-β1 (CTNNB1), among others. Results from these targets indicated that the most enriched pathway was the tumor necrosis factor (TNF) signaling pathway ( p < 0.001 ) and that the most abundant pathway was signal transduction. In the network nodes of the TNF signaling pathway, the Chinese medicines with the highest aggregation were Lablab semen album and Glycyrrhizae radix et rhizoma ( degree = 11 ). The small molecules with the highest aggregation were oxypeucedanin and 3,5,6,7,8,3 ′ ,4 ′ -heptamethoxyflavone ( degree = 4 ). Molecular docking results confirmed that daidzein 7-O-glucoside (daidzin) had the highest degree of binding to TNF proteins in the TNF signaling pathway. Conclusion. This study shows that SLBZP can treat IBS by influencing multiple targets and pathways, of which the TNF signaling pathway may be the most significant. This typifies the pharmacological characteristics of traditional Chinese medicine, i.e., multiple targets, numerous pathways, and specific therapeutic effects on diseases. SLBZP can therefore be used as a candidate drug for clinical IBS by intervening in human signal transduction.


2020 ◽  
Author(s):  
Guo-Jie Hu ◽  
Ding Li ◽  
Shi-Fang Li ◽  
Xiao-Yuan Li ◽  
Xiao-Wei Sun ◽  
...  

Abstract Background An increasing body of research has confirmed the effectiveness of Traditional Chinese Medicine (TCM) for the treatment of irritable bowel syndrome (IBS).Methods We explored the potential mechanism of Changping decoction (CPD) in the treatment of IBS through pathway analysis based on a network pharmacology approach. Public databases, including the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Gene Expression Omnibus, and STRING, were used to screen the active ingredients and targets of CPD. Enrichment analysis was performed using the R-3.6.0 software to expound the biological functions and related pathways of CPD targets. The Cytoscape software was used to construct a “disease-CPD-target” network and identify hub genes of CPD relevant for the treatment of IBS. Employing rat models, pathological observation and abdominal withdrawal reflex tests were used to verify the effectiveness of CPD in the treatment of IBS. Immunohistochemistry was used to confirm the relationship between the CPD treatment and hub genes.Results Network pharmacological analysis of CPD for the treatment of IBS identified 159 active ingredients. A total of 118 key targets were identified, including MAPK8, VEGFA, PTGS2, and others. A series of signaling pathways, such as MAPK, Kaposi sarcoma-associated herpesvirus infection, and IL-17 signaling pathway were found to play an important role in the therapeutic mechanism of CPD in the treatment of IBS. Pathological observation and abdominal withdrawal reflex tests confirmed that the symptoms of IBS in rats were relieved by CPD. Moreover, immunohistochemistry confirmed that CPD could inhibit the expression of inflammation-associated factors, such as VEGFA, MAPK8, and PTGS2.Conclusions Based on network pharmacology analysis, the present study provides insights into the potential mechanism of CPD in the treatment of IBS after successfully screening for associated key target genes and signaling pathways. These findings establish a theoretical basis for the development of CPD-derived therapeutics.


Author(s):  
Qiuke Hou ◽  
Yongquan Huang ◽  
Zhaoyang Zhu ◽  
Liu Liao ◽  
Xinlin Chen ◽  
...  

Abstract Background Tong-Xie-Yao-Fang (TXYF) has been shown to be effective in diarrhoea-predominant irritable bowel syndrome (IBS-D) patients. However, the underlying mechanism remains to be clarified. The aim of this study was to investigate the efficacy and related mechanisms of TXYF in an IBS-D rat model. Methods The IBS-D rat model was established with 4% acetic acid and evaluated by haematoxylin-eosin (HE) staining. Then, IBS-D rats were divided into control, TXYF and rifaximin groups and treated intragastrically with normal saline, TXYF and rifaximin, respectively, for 14 days. The following indicators were measured before and after treatment: defecation frequency, faecal water content (FWC) and colorectal distension (CRD). Histopathological changes in the distal colon were observed after treatment. The expression of OCLN and ZO1 in the distal colon of IBS-D rats reflected the intestinal mucosal permeability, as measured by qRT-PCR, western blot, and enzyme-linked immunosorbent assays (ELISAs). The NF-κB and Notch signalling pathways and inflammation-related factors were investigated. Results After treatment with TXYF, the defecation frequency, FWC and CRD were significantly lower than those in the model group (P < 0.05). HE staining showed that colonic epithelial cells (CECs) in the IBS-D rats displayed significant oedema, impaired intestinal mucosal integrity and an increased influx of inflammatory cells. A significant reduction in granulocyte and CEC oedema was observed after the administration of TXYF and rifaximin compared to that of the model group and blank group (P < 0.05). TXYF significantly upregulated the expression of OCLN and ZO-1 and downregulated inflammation-related factors (IL-6, IL-1β, and TNF-α and the chemokine KC) in IBS-D rats compared to those in the model group rats (P < 0.05). In terms of the NF-κB and Notch signalling pathways, the expression of NICD, p-ERK, Hes-1 and p-P65 decreased significantly in the TXYF and rifaximin groups, while the expression of ATOH1 increased significantly compared to that in the model group (P < 0.05). Conclusion TXYF can effectively improve intestinal permeability and enhance intestinal mucosal barrier function, which may be related to inhibition of the inflammatory cascade and the NF-κB and Notch signalling pathways.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jiye Chen ◽  
Yongjian Zhang ◽  
Yongcheng Wang ◽  
Ping Jiang ◽  
Guofeng Zhou ◽  
...  

Abstract Background Guizhi decoction (GZD), a classical Chinese herbal formula, has been widely used to treat hypertension, but its underlying mechanisms remain elusive. The present study aimed to explore the potential mechanisms and therapeutic effects of GZD on hypertension by integrating network pharmacology and experimental validation. Methods The active ingredients and corresponding targets were collected from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP). The targets related to hypertension were identified from the CTD, GeneCards, OMIM and Drugbank databases. Multiple networks were constructed to identify the key compounds, hub targets, and main biological processes and pathways of GZD against hypertension. The Surflex-Dock software was used to validate the binding affinity between key targets and their corresponding active compounds. The Dahl salt-sensitive rat model was used to evaluate the therapeutic effects of GZD against hypertension. Results A total of 112 active ingredients, 222 targets of GZD and 341 hypertension-related targets were obtained. Furthermore, 56 overlapping targets were identified, five of which were determined as the hub targets for experimental verification, including interleukin 6 (IL-6), C–C motif chemokine 2 (CCL2), IL-1β, matrix metalloproteinase 2 (MMP-2), and MMP-9. Pathway enrichment analysis results indicated that 56 overlapping targets were mainly enriched in several inflammation pathways such as the tumor necrosis factor (TNF) signaling pathway, Toll-like receptor (TLR) signaling pathway and nuclear factor kappa-B (NF-κB) signaling pathway. Molecular docking confirmed that most active compounds of GZD could bind tightly to the key targets. Experimental studies revealed that the administration of GZD improved blood pressure, reduced the area of cardiac fibrosis, and inhibited the expression of IL-6, CCL2, IL-1β, MMP-2 and MMP-9 in rats. Conclusion The potential mechanisms and therapeutic effects of GZD on hypertension may be attributed to the regulation of cardiac inflammation and fibrosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yue Hu ◽  
Fang Chen ◽  
Haiyong Ye ◽  
Bin Lu

AbstractStress is one of the major causes of irritable bowel syndrome (IBS), which is well-known for perturbing the microbiome and exacerbating IBS-associated symptoms. However, changes in the gut microbiome and metabolome in response to colorectal distention (CRD), combined with restraint stress (RS) administration, remains unclear. In this study, CRD and RS stress were used to construct an IBS rat model. The 16S rRNA gene sequencing was used to characterize the microbiota in ileocecal contents. UHPLC-QTOF-MS/MS assay was used to characterize the metabolome of gut microbiota. As a result, significant gut microbial dysbiosis was observed in stress-induced IBS rats, with the obvious enrichment of three and depletion of 11 bacterial taxa in IBS rats, when compared with those in the control group (q < 0.05). Meanwhile, distinct changes in the fecal metabolic phenotype of stress-induced IBS rats were also found, including five increased and 19 decreased metabolites. Furthermore, phenylalanine, tyrosine and tryptophan biosynthesis were the main metabolic pathways induced by IBS stress. Moreover, the altered gut microbiota had a strong correlation with the changes in metabolism of stress-induced IBS rats. Prevotella bacteria are correlated with the metabolism of 1-Naphthol and Arg.Thr. In conclusion, the gut microbiome, metabolome and their interaction were altered. This may be critical for the development of stress-induced IBS.


2021 ◽  
Author(s):  
Masamichi Sato ◽  
Takahiro Kudo ◽  
Nobuyasu Arai ◽  
Reiko Kyodo ◽  
Kenji Hosoi ◽  
...  

Abstract Background: The correlation between small intestinal motility alteration and irritable bowel syndrome (IBS) is not well evaluated. Aims: To assess the small intestinal and colonic transits in an IBS rat model with restraint stress and determine the role of small intestinal motility in the IBS pathophysiology.Methods: Restraint stress was utilized to make adolescent IBS rat models that were evaluated for clinical symptoms, including stool frequency and diarrhea. The small intestinal motility and transit rate were also evaluated. The amounts of mRNA encoding corticotropin-releasing hormone, mast cell, and serotonin (5-Hydroxytryptamine; 5-HT) receptor 3a were quantified using real-time polymerase chain reaction (PCR); the 5-HT expression was evaluated using immunostaining.Results: Restraint stress significantly increased the number of fecal pellet outputs, stool water content, and small intestinal motility in the IBS rat models. There was no difference in real-time PCR results, but immunostaining analysis revealed that 5-HT expression in the small intestine was significantly increased in the IBS rat models.Conclusions: In the adolescent rat model of IBS with restraint stress, we observed an increase in small intestinal and colonic motility. In the small intestine, enhanced 5-HT secretion in the distal portion may be involved in increasing the small intestinal motility.


Sign in / Sign up

Export Citation Format

Share Document