scholarly journals Disturbed Boundaries Extraction in Coal-grain Overlap Areas With High Groundwater Levels Using UAV-based Visible and Multispectral Imagery

Author(s):  
Yunqi Guo ◽  
Yanling Zhao ◽  
Haoyue Yan

Abstract Coal-grain overlap areas (CGOA) with high groundwater levels are vulnerable to subsidence and water logging during a series of mining activities, which have adverse impacts on crop yields. Such damage requires full reports of disturbed boundaries for the agricultural reimbursement and ongoing reclamation. Since direct measurements are difficult in such a case because of vast, unreachable areas, so it is necessary to be able to identify out-of-production boundary (OB) and reduced-production boundary (RB) in the corresponding region. In this study, OB was extracted by setting thresholds through characteristics of the cultivated land elevation based on UAV-generated digital surface model (DSM) and digital orthophoto map (DOM). Meanwhile, aboveground biomass (AGB), the soil plant analysis development (SPAD) value of chlorophyll contents, and leaf area index (LAI), were used to select the appropriate vegetation indexes (VI) to perform a reduced-production map (RM) based on power regression (PR), exponential regression (ER), multiple linear regression (MR) and random forest (RF) algorithms. Finally, an improved OTSU segmentation algorithm was applied to extract mild RB and severe RB. The results show elevation threshold segmentation method and the improved OTSU segmentation method can accurately recognize and extract disturbed boundaries, which are consistent with the tonal difference after crop damage in the image. This study provides reference methods and theoretical supports for disturbed boundaries determination in CGOA with high groundwater levels for further agricultural compensation and reclamation processes.

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 478
Author(s):  
Jan-Philip Witte ◽  
Willem Zaadnoordijk ◽  
Jan Buyse

Since the nineteen fifties, groundwater levels in the Netherlands dropped more than as simulated by hydrological models. In the rural sandy part of the Netherlands, the difference amounts to approximately 0.3 m on average. The answer to the question of what or who caused this ‘background decline’ of groundwater tables may have juridical and financial consequences, especially since Dutch farmers are entitled to financial compensation for crop damage caused by groundwater abstractions. In our forensic study, we investigated how anthropogenic changes in groundwater recharge from 1950 to 2010 affected groundwater levels. In this period, crop yields in agriculture have risen sharply, and, because crop water use is proportionate to crop production, this led to more crop evapotranspiration and subsequently less groundwater recharge. Urban expansion and forestation has also led to a decrease in groundwater recharge. We showed that these changes in recharge may have caused a decline of groundwater of 0.2–0.3 m over 60 years (1950–2010). The simulated drawdown caused by groundwater abstractions appeared to depend on the amount of groundwater recharge related to land use and crop yield. This means that to properly evaluate the effects of a particular groundwater abstraction, one should account for the hydrological history of the landscape since the start of that abstraction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yankun Sun ◽  
Jiaqi Xu ◽  
Xiangyang Miao ◽  
Xuesong Lin ◽  
Wanzhen Liu ◽  
...  

AbstractAs the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L−1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L−1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L−1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.


2017 ◽  
Author(s):  
Daniel S. Goll ◽  
Nicolas Vuichard ◽  
Fabienne Maignan ◽  
Albert Jornet-Puig ◽  
Jordi Sardans ◽  
...  

Abstract. Land surface models rarely incorporate the terrestrial phosphorus cycle and its interactions with the carbon cycle, despite the extensive scientific debate about the importance of nitrogen and phosphorus supply for future land carbon uptake. We describe a representation of the terrestrial phosphorus cycle for the land surface model ORCHIDEE, and evaluate it with data from nutrient manipulation experiments along a soil formation chronosequence in Hawaii. ORCHIDEE accounts for influence of nutritional state of vegetation on tissue nutrient concentrations, photosynthesis, plant growth, biomass allocation, biochemical (phosphatase-mediated) mineralization and biological nitrogen fixation. Changes in nutrient content (quality) of litter affect the carbon use efficiency of decomposition and in return the nutrient availability to vegetation. The model explicitly accounts for root zone depletion of phosphorus as a function of root phosphorus uptake and phosphorus transport from soil to the root surface. The model captures the observed differences in the foliage stoichiometry of vegetation between an early (300yr) and a late stage (4.1 Myr) of soil development. The contrasting sensitivities of net primary productivity to the addition of either nitrogen, phosphorus or both among sites are in general reproduced by the model. As observed, the model simulates a preferential stimulation of leaf level productivity when nitrogen stress is alleviated, while leaf level productivity and leaf area index are stimulated equally when phosphorus stress is alleviated. The nutrient use efficiencies in the model are lower as observed primarily due to biases in the nutrient content and turnover of woody biomass. We conclude that ORCHIDEE is able to reproduce the shift from nitrogen to phosphorus limited net primary productivity along the soil development chronosequence, as well as the contrasting responses of net primary productivity to nutrient addition.


2017 ◽  
Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Delphine Jennifer Leroux ◽  
Hélène Dewaele ◽  
David Fairbairn ◽  
...  

Abstract. In this study, a global Land Data Assimilation system (LDAS-Monde) is tested over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface Soil Moisture (SM) and Leaf Area Index (LAI) observations to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. Surface SM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow-dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 cm to 100 cm depth). A sensitivity test of the Jacobians over 2000–2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and surface SM have an impact on the different control variables. From the assimilation of surface SM, the LDAS is more effective in modifying soil-moisture from the top layers of soil as model sensitivity to surface SM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 cm to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Assimilation impact shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. The assimilation impact's evaluation is successfully carried out using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observations based estimates of up-scaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.


Author(s):  
Nusrat Jahan ◽  
Md. Ashabul Hoque ◽  
Md. Rasal-Monir ◽  
Sumya Fatima ◽  
Mohammad Nurul Islam ◽  
...  

The study was carried out to find out the effect of zinc (Zn) and boron (B) on growth and yield of okra (BARI Dherosh 1). The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. The treatments of the experiment were, T0 (without Zn or B), T1 (20 kg Zn ha-1), T2 (30 kg Zn ha-1), T3 (10 kg B ha-1), T4 (20 kg B ha-1), T5 (20 kg Zn ha-1 + 10 kg B ha-1), T6 (20 kg Zn ha-1 + 20 kg B ha-1), T7 (30 kg Zn ha-1 + 10 kg B ha-1) and T8 (30 kg Zn ha-1 + 20 kg B ha-1) were undertaken to evaluate the best results of the study. The highest plant height was found in T8 (30 kg Zn ha-1 + 20 kg B ha-1) but the highest number of leaves plant-1 was recorded from T7 (30 kg Zn ha-1 + 10 kg B ha-1). On the other hand, the maximum leaf area index, SPAD value, mean fruit weight, fruit length, fruit diameter, fruit dry matter (%), number of fruits plant-1, fresh fruit weight plant-1 , fruit yield plot-1 and fruit yield ha-1 were found in T7 (30 kg Zn ha-1 + 10 kg B ha-1), while the control (T0) showed lowest performance for the respected parameters. It is strongly concluded that 30 kg Zn ha-1 with 10 kg B ha-1 combination may be helpful for okra cultivation in the field level to increase okra production.


2014 ◽  
Vol 14 (17) ◽  
pp. 23995-24041 ◽  
Author(s):  
J. A. Holm ◽  
K. Jardine ◽  
A. B. Guenther ◽  
J. Q. Chambers ◽  
E. Tribuzy

Abstract. Tropical trees are known to be large emitters of biogenic volatile organic compounds (BVOC), accounting for up to 75% of the global isoprene budget. Once in the atmosphere, these compounds influence multiple processes associated with air quality and climate. However, uncertainty in biogenic emissions is two-fold, (1) the environmental controls over isoprene emissions from tropical forests remain highly uncertain; and (2) our ability to accurately represent these environmental controls within models is lacking. This study evaluated the biophysical parameters that drive the global Model of Emissions of Gases and Aerosols from Nature (MEGAN) embedded in a biogeochemistry land surface model, the Community Land Model (CLM), with a focus on isoprene emissions from an Amazonian forest. Upon evaluating the sensitivity of 19 parameters in CLM that currently influence isoprene emissions by using a Monte Carlo analysis, up to 61% of the uncertainty in mean isoprene emissions was caused by the uncertainty in the parameters related to leaf temperature. The eight parameters associated with photosynthetic active radiation (PAR) contributed in total to only 15% of the uncertainty in mean isoprene emissions. Leaf temperature was strongly correlated with isoprene emission activity (R2 = 0.89). However, when compared to field measurements in the Central Amazon, CLM failed to capture the upper 10–14 °C of leaf temperatures throughout the year (i.e., failed to represent ~32 to 46 °C), and the spread observed in field measurements was not representative in CLM. This is an important parameter to accurately simulate due to the non-linear response of emissions to temperature. MEGAN-CLM 4.0 overestimated isoprene emissions by 60% for a Central Amazon forest (5.7 mg m−2 h−1 vs. 3.6 mg m−2 h−1), but due to reductions in leaf area index (LAI) by 28% in MEGAN-CLM 4.5 isoprene emissions were within 7% of observed data (3.8 mg m−2 h−1). When a slight adjustment to leaf temperature was made to match observations, isoprene emissions increased 24%, up to 4.8 mg m−2 h−1. Air temperatures are very likely to increase in tropical regions as a result of human induced climate change. Reducing the uncertainty of leaf temperature in BVOC algorithms, as well as improving the accuracy of replicating leaf temperature output in land surface models is warranted in order to improve estimations of tropical BVOC emissions.


Author(s):  
Y. Rajasekhara Reddy ◽  
G. Ramanandam ◽  
P. Subbaramamma ◽  
A. V. D. Dorajeerao

A field experiment was carried out during rabi season of 2018-2019, at college farm, College of Horticulture, Dr. Y.S.R. Horticultural University, Venkataramannagudem, West Godavari District, Andhra Pradesh. The experiment was laidout in a Randomised Block Design with eleven treatments (viz., T1- NAA @ 50 ppm, T2-NAA @ 100 ppm, T3-GA3 @ 50 ppm,  T4-GA3 @ 100 ppm, T5-Thiourea @ 250 ppm, T6-Thiourea @ 500 ppm, T7-28-Homobrassinolide @ 0.1 ppm, T8-28-Homobrassinolide @ 0.2 ppm, T9-Triacontinol @ 2.5 ppm, T10-Triacontinol @ 5 ppm, T11-(Control) Water spray) and three replications. The treatments were imposed at 30 and 45 DAT in the form of foliar spray. Foliar application of GA3@ 100 ppm (T4) had recorded the maximum plant height (108.20 cm), leaf area (9.53 cm2) and leaf area index (0.74). Foliar application of thiourea @ 250 ppm (T5) had recorded the maximum values with respect to number of primary branches (15.03 plant-1), number of secondary branches (83.40 plant-1), plant spread (1793 cm2 plant-1), fresh weight (376.29 g plant-1), dry weight (103.54 g plant-1) and number of leaves plant-1((298.8). The same treatment (T5) had recorded the highest values with respect to crop growth rate (1.44 gm-2d-1), chlorophyll-a (1.40 mg g-1), chlorophyll-b (0.076 mg g-1) and total chlorophyll contents (1.48 mg g-1) in the leaves.


2020 ◽  
Author(s):  
Yaqiong Lu ◽  
Xianyu Yang

Abstract. Crop growth in land surface models normally requires high temporal resolution climate data (3-hourly or 6-hourly), but such high temporal resolution climate data are not provided by many climate model simulations due to expensive storage, which limits modeling choice if there is an interest in a particular climate simulation that only saved monthly outputs. The Community Land Surface Model (CLM) has proposed an alternative approach for utilizing monthly climate outputs as forcing data since version 4.5, and it is called the anomaly forcing CLM. However, such an approach has never been validated for crop yield projections. In our work, we created anomaly forcing datasets for three climate scenarios (1.5 °C warming, 2.0 °C warming, and RCP4.5) and validated crop yields against the standard CLM forcing with the same climate scenarios using 3-hourly data. We found that the anomaly forcing CLM could not produce crop yields identical to the standard CLM due to the different submonthly variations, and crop yields were underestimated by 5–8 % across the three scenarios (1.5 °C, 2.0 °C, and RCP4.5) for the global average, and 28–41 % of cropland showed significantly different yields. However, the anomaly forcing CLM effectively captured the relative changes between scenarios and over time, as well as regional crop yield variations. We recommend that such an approach be used for qualitative analysis of crop yields when only monthly outputs are available. Our approach can be adopted by other land surface models to expand their capabilities for utilizing monthly climate data.


Author(s):  
M. A. Altyntsev ◽  
S. A. Arbuzov ◽  
R. A. Popov ◽  
G. V. Tsoi ◽  
M. O. Gromov

A dense digital surface model is one of the products generated by using UAV aerial survey data. Today more and more specialized software are supplied with modules for generating such kind of models. The procedure for dense digital model generation can be completely or partly automated. Due to the lack of reliable criterion of accuracy estimation it is rather complicated to judge the generation validity of such models. One of such criterion can be mobile laser scanning data as a source for the detailed accuracy estimation of the dense digital surface model generation. These data may be also used to estimate the accuracy of digital orthophoto plans created by using UAV aerial survey data. The results of accuracy estimation for both kinds of products are presented in the paper.


2007 ◽  
Vol 20 (15) ◽  
pp. 3902-3923 ◽  
Author(s):  
Peter E. Thornton ◽  
Niklaus E. Zimmermann

Abstract A new logical framework relating the structural and functional characteristics of a vegetation canopy is presented, based on the hypothesis that the ratio of leaf area to leaf mass (specific leaf area) varies linearly with overlying leaf area index within the canopy. Measurements of vertical gradients in specific leaf area and leaf carbon:nitrogen ratio for five species (two deciduous and three evergreen) in a temperate climate support this hypothesis. This new logic is combined with a two-leaf (sunlit and shaded) canopy model to arrive at a new canopy integration scheme for use in the land surface component of a climate system model. An inconsistency in the released model radiation code is identified and corrected. Also introduced here is a prognostic canopy model with coupled carbon and nitrogen cycle dynamics. The new scheme is implemented within the Community Land Model and tested in both diagnostic and prognostic canopy modes. The new scheme increases global gross primary production by 66% (from 65 to 108 Pg carbon yr−1) for diagnostic model simulations driven with reanalysis surface weather, with similar results (117 PgC yr−1) for the new prognostic model. Comparison of model predictions to global syntheses of observations shows generally good agreement for net primary productivity (NPP) across a range of vegetation types, with likely underestimation of NPP in tundra and larch communities. Vegetation carbon stocks are higher than observed in forest systems, but the ranking of stocks by vegetation type is accurately captured.


Sign in / Sign up

Export Citation Format

Share Document