scholarly journals Applying high throughput and comprehensive immunoinformatics approaches to design a trivalentsubunit vaccine forinduction of immune response against human emerging coronaviruses SARS-CoV, MERS-CoV and SARS-CoV2

2020 ◽  
Author(s):  
Abolfazl Rahmani ◽  
Masoud Baee ◽  
Kiarash Saleki ◽  
Saead Moradi ◽  
Hamid Reza Nouri

Abstract Background Coronaviruses (CoV) cause diseases such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and Coronavirus disease 2019 (COVID-19). Therefore, this study was conducted to contrast a trivalent subunit vaccine against SARS, MERS and COVID-19. The CTL, HTL, MHC I, and IFN-γ epitopes were predicted. Moreover, to stimulate strong helper T lymphocytes (HTLs) responses, Pan HLA DR-binding epitope (PADRE) was used. Also, for boosting immune response, β-defensin 2 was added to the construct as an adjuvant. Furthermore, TAT was applied in the vaccine to facilitate the intracellular delivery. Results Based on the predicted epitopes, a trivalent multi-epitope vaccine with a molecular weight of 74.8 kDa as a strong antigen, a non-allergenic, and soluble protein was constructed. Furtheremore, analyses validated the stability of the proposed vaccine. The binding affinity of the vaccine construct with the TLR3 was confirmed by molecular docking and, stability of the docked complex was simulated. The predicted epitopes demonstrated strong potential to stimulate T and B-cell mediated immune responses. Furthermore, codon optimization and in silico cloning guaranteed increased expression. Conclusions In this work, immunoinformatics investigations demonstrated that this next-generation approach may provide a new horizon for the development of a highly immunogenic vaccine against SARS-CoV, MERS‐CoV, and SARS-CoV-2.

2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


2019 ◽  
Vol 51 (12) ◽  
pp. 1-10 ◽  
Author(s):  
Miwa Sasai ◽  
Masahiro Yamamoto

AbstractHosts have been fighting pathogens throughout the evolution of all infectious diseases. Toxoplasma gondii is one of the most common infectious agents in humans but causes only opportunistic infection in healthy individuals. Similar to antimicrobial immunity against other organisms, the immune response against T. gondii activates innate immunity and in turn induces acquired immune responses. After activation of acquired immunity, host immune cells robustly produce the proinflammatory cytokine interferon-γ (IFN-γ), which activates a set of IFN-γ-inducible proteins, including GTPases. IFN-inducible GTPases are essential for cell-autonomous immunity and are specialized for effective clearance and growth inhibition of T. gondii by accumulating in parasitophorous vacuole membranes. Recent studies suggest that the cell-autonomous immune response plays a protective role in host defense against not only T. gondii but also various intracellular bacteria. Moreover, the negative regulatory mechanisms of such strong immune responses are also important for host survival after infection. In this review, we will discuss in detail recent advances in the understanding of host defenses against T. gondii and the roles played by cell-autonomous immune responses.


2011 ◽  
Vol 18 (5) ◽  
pp. 815-824 ◽  
Author(s):  
Bala Ramaswami ◽  
Iulia Popescu ◽  
Camila Macedo ◽  
Chunqing Luo ◽  
Ron Shapiro ◽  
...  

ABSTRACTBK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4+T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4+T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.


1997 ◽  
Vol 186 (10) ◽  
pp. 1623-1631 ◽  
Author(s):  
Rose S. Chu ◽  
Oleg S. Targoni ◽  
Arthur M. Krieg ◽  
Paul V. Lehmann ◽  
Clifford V. Harding

Synthetic oligodeoxynucleotides (ODN) that contain unmethylated CpG motifs (CpG ODN) induce macrophages to secrete IL-12, which induces interferon (IFN)-γ secretion by natural killer (NK) cells. Since these cytokines can induce T helper 1 (Th1) differentiation, we examined the effects of coadministered CpG ODN on the differentiation of Th responses to hen egg lysozyme (HEL). In both BALB/c (Th2-biased) and B10.D2 (Th1-biased) mice, immunization with HEL in incomplete Freund's adjuvant (IFA) resulted in Th2-dominated immune responses characterized by HEL-specific secretion of IL-5 but not IFN-γ. In contrast, immunization with IFA-HEL plus CpG ODN switched the immune response to a Th1-dominated cytokine pattern, with high levels of HEL-specific IFN-γ secretion and decreased HEL-specific IL-5 production. IFA-HEL plus CpG ODN also induced anti-HEL IgG2a (a Th1-associated isotype), which was not induced by IFA-HEL alone. Control non–CpG ODN did not induce IFN-γ or IgG2a, excepting lesser increases in B10.D2 (Th1-biased) mice. Thus, CpG ODN provide a signal to switch on Th1-dominated responses to coadministered antigen and are potential adjuvants for human vaccines to elicit protective Th1 immunity.


2002 ◽  
Vol 76 (12) ◽  
pp. 6093-6103 ◽  
Author(s):  
Eishiro Mizukoshi ◽  
Michelina Nascimbeni ◽  
Joshua B. Blaustein ◽  
Kathleen Mihalik ◽  
Charles M. Rice ◽  
...  

ABSTRACT The chimpanzee is a critical animal model for studying cellular immune responses to infectious pathogens such as hepatitis B and C viruses, human immunodeficiency virus, and malaria. Several candidate vaccines and immunotherapies for these infections aim at the induction or enhancement of cellular immune responses against viral epitopes presented by common human major histocompatibility complex (MHC) alleles. To identify and characterize chimpanzee MHC class I molecules that are functionally related to human alleles, we sequenced 18 different Pan troglodytes (Patr) alleles of 14 chimpanzees, 2 of them previously unknown and 3 with only partially reported sequences. Comparative analysis of Patr binding pockets and binding assays with biotinylated peptides demonstrated a molecular homology between the binding grooves of individual Patr alleles and the common human alleles HLA-A1, -A2, -A3, and -B7. Using cytotoxic T cells isolated from the blood of hepatitis C virus (HCV)-infected chimpanzees, we then mapped the Patr restriction of these HCV peptides and demonstrated functional homology between the Patr-HLA orthologues in cytotoxicity and gamma interferon (IFN-γ) release assays. Based on these results, 21 HCV epitopes were selected to characterize the chimpanzees' cellular immune response to HCV. In each case, IFN-γ-producing T cells were detectable in the blood after but not prior to HCV infection and were specifically targeted against those HCV peptides predicted by Patr-HLA homology. This study demonstrates a close functional homology between individual Patr and HLA alleles and shows that HCV infection generates HCV peptides that are recognized by both chimpanzees and humans with Patr and HLA orthologues. These results are relevant for the design and evaluation of vaccines in chimpanzees that can now be selected according to the most frequent human MHC haplotypes.


2003 ◽  
Vol 10 (4) ◽  
pp. 637-642 ◽  
Author(s):  
C. M. Ausiello ◽  
R. Lande ◽  
P. Stefanelli ◽  
C. Fazio ◽  
G. Fedele ◽  
...  

ABSTRACT The relative value of antibodies and/or T-cell immune responses to Bordetella pertussis antigens in the immunity induced by acellular pertussis (aP) vaccines is still an open issue, probably due to the incomplete knowledge on the mechanisms of protective immunity to pertussis. The relevance of T-cell immune responses in protection from pertussis has been demonstrated in murine and human models of infection; thus, in this study, the ability of different vaccine preparations of three component (pertussis toxin, filamentous hemagglutinin, and pertactin) aP vaccines to induce T-cell responses was investigated in mice. All vaccine preparations examined passed the immunogenicity control test, based on antibody titer assessment, according to European Pharmacopoeia standards, and protected mice from B. pertussis intranasal challenge, but not all preparations were able to prime T cells to pertussis toxin, the specific B. pertussis antigen. In particular, one vaccine preparation was unable to induce proliferation and gamma interferon (IFN-γ) production while the other two gave borderline results. The evaluation of T-cell responses to pertussis toxin antigen may provide information on the protective immunity induced by aP vaccines in animal models. Considering the critical role of the axis interleukin-12-IFN-γ for protection from pertussis, our results suggest that testing the induction of a key protective cytokine such as IFN-γ could be an additional tool for the evaluation of the immune response induced by aP vaccines.


2013 ◽  
Vol 20 (7) ◽  
pp. 1055-1060 ◽  
Author(s):  
Jong-Hyun Kim ◽  
Hae-Jin Sohn ◽  
Jinyoung Lee ◽  
Hee-Jong Yang ◽  
Yong-Joon Chwae ◽  
...  

ABSTRACTNaegleria fowleri, a pathogenic free-living amoeba, causes fatal primary amoebic meningoencephalitis (PAM) in humans and animals. Thenfa1gene (360 bp), cloned from a cDNA library ofN. fowleri, produces a 13.1-kDa recombinant protein which is located on pseudopodia, particularly the food cup structure. Thenfa1gene plays an important role in the pathogenesis ofN. fowleriinfection. To examine the effect ofnfa1DNA vaccination againstN. fowleriinfection, we constructed a lentiviral vector (pCDH) expressing thenfa1gene. For thein vivomouse study, BALB/c mice were intranasally vaccinated with viral particles of a viral vector expressing thenfa1gene. To evaluate the effect of vaccination and immune responses of mice, we analyzed the IgG levels (IgG, IgG1, and IgG2a), cytokine induction (interleukin-4 [IL-4] and gamma interferon [IFN-γ]), and survival rates of mice that developed PAM. The levels of both IgG and IgG subclasses (IgG1 and IgG2a) in vaccinated mice were significantly increased. The cytokine analysis showed that vaccinated mice exhibited greater IL-4 and IFN-γ production than the other control groups, suggesting a Th1/Th2 mixed-type immune response. In vaccinated mice, high levels of Nfa1-specific IgG antibodies continued until 12 weeks postvaccination. The mice vaccinated with viral vector expressing thenfa1gene also exhibited significantly higher survival rates (90%) after challenge withN. fowleritrophozoites. Finally, thenfa1vaccination effectively induced protective immunity by humoral and cellular immune responses inN. fowleri-infected mice. These results suggest that DNA vaccination using a viral vector may be a potential tool againstN. fowleriinfection.


2006 ◽  
Vol 74 (11) ◽  
pp. 6280-6286 ◽  
Author(s):  
Matthew L. deSchoolmeester ◽  
Harinder Manku ◽  
Kathryn J. Else

ABSTRACT Trichuris muris resides in intimate contact with its host, burrowing within cecal epithelial cells. However, whether the enterocyte itself responds innately to T. muris is unknown. This study investigated for the first time whether colonic intestinal epithelial cells (IEC) produce cytokines or chemokines following T. muris infection and whether divergence of the innate response could explain differentially polarized adaptive immune responses in resistant and susceptible mice. Increased expression of mRNA for the proinflammatory cytokines gamma interferon (IFN-γ) and tumor necrosis factor and the chemokine CCL2 (MCP-1) were seen after infection of susceptible and resistant strains, with the only difference in expression being a delayed increase in CCL2 in BALB/c IEC. These increases were ablated in MyD88−/− mice, and NF-κB p65 was phosphorylated in response to T. muris excretory/secretory products in the epithelial cell line CMT-93, suggesting involvement of the MyD88-NF-κB signaling pathway in IEC cytokine expression. These data reveal that IEC respond innately to T. muris. However, the minor differences identified between resistant and susceptible mice are unlikely to underlie the subsequent development of a susceptible type 1 (IFN-γ-dominated) or resistant type 2 (interleukin-4 [IL-4]/IL-13-dominated) adaptive immune response.


2008 ◽  
Vol 15 (4) ◽  
pp. 659-667 ◽  
Author(s):  
Timothy V. Baszler ◽  
Varda Shkap ◽  
Waithaka Mwangi ◽  
Christopher J. Davies ◽  
Bruce A. Mathison ◽  
...  

ABSTRACT Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4+ T-lymphocyte activation and gamma interferon (IFN-γ) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4+ cell proliferation and IFN-γ T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-γ secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-γ-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-γ secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.


2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Sophie J. Rhodes ◽  
Charlotte Sarfas ◽  
Gwenan M. Knight ◽  
Andrew White ◽  
Ansar A. Pathan ◽  
...  

ABSTRACT Macaques play a central role in the development of human tuberculosis (TB) vaccines. Immune and challenge responses differ across macaque and human subpopulations. We used novel immunostimulation/immunodynamic modeling methods in a proof-of-concept study to determine which macaque subpopulations best predicted immune responses in different human subpopulations. Data on gamma interferon (IFN-γ)-secreting CD4+ T cells over time after recent Mycobacterium bovis BCG vaccination were available for 55 humans and 81 macaques. Human population covariates were baseline BCG vaccination status, time since BCG vaccination, gender, and the monocyte/lymphocyte cell count ratio. The macaque population covariate was the colony of origin. A two-compartment mathematical model describing the dynamics of the IFN-γ T cell response after BCG vaccination was calibrated to these data using nonlinear mixed-effects methods. The model was calibrated to macaque and human data separately. The association between subpopulations and the BCG immune response in each species was assessed. The macaque subpopulations that best predicted immune responses in different human subpopulations were identified using Bayesian information criteria. We found that the macaque colony and the human baseline BCG status were significantly (P < 0.05) associated with the BCG-induced immune response. For humans who were BCG naïve at baseline, Indonesian cynomolgus macaques and Indian rhesus macaques best predicted the immune response. For humans who had already been BCG vaccinated at baseline, Mauritian cynomolgus macaques best predicted the immune response. This work suggests that the immune responses of different human populations may be best modeled by different macaque colonies, and it demonstrates the potential utility of immunostimulation/immunodynamic modeling to accelerate TB vaccine development.


Sign in / Sign up

Export Citation Format

Share Document