scholarly journals Identification of a Prognostic Signature of Malignant Melanoma Based on Tumor Immune Microenvironment Exploration

2020 ◽  
Author(s):  
lingyan yuan ◽  
Zhitong Bing ◽  
Jianshu Wang ◽  
Jing Li ◽  
Xiaodong Jin ◽  
...  

Abstract Background: In contrast to identification of well-defined oncogenic alterations like BRAF mutations for malignant melanoma (MM) patient stratification, effective selection of predictive biomarkers remains a challenge in the era of checkpoint blockade.Methods: The differentially expressed genes (DEGs) related to the TME were identified using The Cancer Genome Atlas (TCGA) dataset by Wilcoxon rank sum test. The prognostic effects of immune-related genes (IRGs) were analyzed using univariate Cox regression. Next, the prognostic model was constructed by step multivariate Cox regression and risk score of each sample was calculated. Then, survival and Receiver Operating Characteristic (ROC) analyses were conducted to validate the model using TCGA and the Gene Expression Omnibus (GEO) datasets, respectively. Finally, the overall immune status, tumor purity of high- and low-risk groups was further analyzed to reveal the potential mechanisms of prognostic effects of the model.Results: Twenty eight IRGs were identified, the univariate cox analysis indicated the hazard ratio ranged from 0.796 to 2.621 (p-value < 0.05). 6 genes (SLPI, S100A7, LYZ, CCL19, CXCR4 and CD79A) were screened out by step multivariate cox regression and a 6-IRGs, which can be used as an independent prognostic factor, was constructed. The MM patients in both training (TCGA) and testing (GEO) datasets can be well stratified as high-risk and low-risk groups with the 6-IRGs signature, and the 3-year and 5-year area under curve (AUC) of ROC curves of GEO set were 0.681 and 0.678 (GSE19234). Conclusions: In sum, we identified and constructed a 6-IRGs , which can be used to predict the prognosis of metastasis in MM patients.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chao Yang ◽  
Shuoyang Huang ◽  
Fengyu Cao ◽  
Yongbin Zheng

Abstract Background and aim Lipid metabolic reprogramming is considered to be a new hallmark of malignant tumors. The purpose of this study was to explore the expression profiles of lipid metabolism-related genes (LMRG) in colorectal cancer (CRC). Methods The lipid metabolism statuses of 500 CRC patients from the Cancer Genome Atlas (TCGA) and 523 from the Gene Expression Omnibus (GEO GSE39582) database were analyzed. The risk signature was constructed by univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression. Results A novel four-LMRG signature (PROCA1, CCKBR, CPT2, and FDFT1) was constructed to predict clinical outcomes in CRC patients. The risk signature was shown to be an independent prognostic factor for CRC and was associated with tumour malignancy. Principal components analysis demonstrated that the risk signature could distinguish between low- and high-risk patients. There were significantly differences in abundances of tumor-infiltrating immune cells and mutational landscape between the two risk groups. Patients in the low-risk group were more likely to have higher tumor mutational burden, stem cell characteristics, and higher PD-L1 expression levels. Furthermore, a genomic-clinicopathologic nomogram was established and shown to be a more effective risk stratification tool than any clinical parameter alone. Conclusions This study demonstrated the prognostic value of LMRG and showed that they may be partially involved in the suppressive immune microenvironment formation.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Linxin Teng ◽  
Kaiyuan Wang ◽  
Yu Liu ◽  
Yanxia Ma ◽  
Weiping Chen ◽  
...  

Accumulating statistics have shown that liver cancer causes the second highest mortality rate of cancer-related deaths worldwide, of which 80% is hepatocellular carcinoma (HCC). Given the underlying molecular mechanism of HCC pathology is not fully understood yet, identification of reliable predictive biomarkers is more applicable to improve patients’ outcomes. The results of principal component analysis (PCA) showed that the grouped data from 1557 samples in Gene Expression Omnibus (GEO) came from different populations, and the mean tumor purity of tumor tissues was 0.765 through the estimate package in R software. After integrating the differentially expressed genes (DEGs), we finally got 266 genes. Then, the protein-protein interaction (PPI) network was established based on these DEGs, which contained 240 nodes and 1747 edges. FOXM1 was the core gene in module 1 and highly associated with FOXM1 transcription factor network pathway, while FTCD was the core gene in module 2 and was enriched in the metabolism of amino acids and derivatives. The expression levels of hub genes were in line with The Cancer Genome Atlas (TCGA) database. Meanwhile, there were certain correlations among the top ten genes in the up- and downregulated DEGs. Finally, Kaplan–Meier curves and receiver operating characteristic (ROC) curves were plotted for the top five genes in PPI. Apart from CDKN3, the others were closely concerned with overall survival. In this study, we detected the potential biomarkers and their involved biological processes, which would provide a new train of thought for clinical diagnosis and treatment.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wenchang Lv ◽  
Yichen Wang ◽  
Chongru Zhao ◽  
Yufang Tan ◽  
Mingchen Xiong ◽  
...  

The metastasis and poor prognosis are still regarded as the main challenge in the clinical treatment of breast cancer (BC). Both N6-methyladenosine (m6A) modification and lncRNAs play vital roles in the carcinogenesis and evolvement of BC. Considering the unknown association of m6A and lncRNAs in BC, this study therefore aims to discern m6A-related lncRNAs and explore their prognostic value in BC patients. Firstly, a total of 6 m6A-related lncRNAs were screened from TCGA database and accordingly constructed a prognostic-predicting model. The BC patients were then divided into high-risk and low-risk groups dependent on the median cutoff of risk score based on this model. Then, the predictive value of this model was validated by the analyses of cox regression, Kaplan-Meier curve, ROC curve, and the biological differences in the two groups were validated by PCA, KEGG, GSEA, immune status as well as in vitro assay. Finally, we accordingly constructed a risk prognostic model based on the 6 identified m6A-related lncRNAs, including Z68871.1, AL122010.1, OTUD6B-AS1, AC090948.3, AL138724.1, EGOT. Interestingly, the BC patients were divided into the low-risk and high-risk groups with different prognoses according to the risk score. Notably, the risk score of the model was an excellent independent prognostic factor. In the clinical sample validation, m6A regulatory proteins were differentially expressed in patients with different risks, and the markers of tumor-associated macrophages and m6A regulators were co-localized in high-risk BC tissues. This well-validated risk assessment tool based on the repertoire of these m6A-related genes and m6A-related lncRNAs, is of highly prognosis-predicting ability, and might provide a supplemental screening method for precisely judging BC prognosis.


Author(s):  
Pengju Li ◽  
Shihui Hao ◽  
Yongkang Ye ◽  
Jinhuan Wei ◽  
Yiming Tang ◽  
...  

Immune checkpoint inhibitor (ICI) treatment has been used to treat advanced urothelial cancer. Molecular markers might improve risk stratification and prediction of ICI benefit for urothelial cancer patients. We analyzed 406 cases of bladder urothelial cancer from The Cancer Genome Atlas (TCGA) data set and identified 161 messenger RNAs (mRNAs) as differentially expressed immunity genes (DEIGs). Using the LASSO Cox regression model, an eight-mRNA-based risk signature was built. We validated the prognostic and predictive accuracy of this immune-related risk signature in 348 metastatic urothelial cancer (mUC) samples treated with anti-PD-L1 (atezolizumab) from IMvigor210. We built an immune-related risk signature based on the eight mRNAs: ANXA1, IL22, IL9R, KLRK1, LRP1, NRG3, SEMA6D, and STAP2. The eight-mRNA-based risk signature successfully categorizes patients into high-risk and low-risk groups. Overall survival was significantly different between these groups, regardless if the initial TCGA training set, the internal TCGA testing set, all TCGA set, or the ICI treatment set. The hazard ratio (HR) of the high-risk group to the low-risk group was 3.65 (p &lt; 0.0001), 2.56 (p &lt; 0.0001), 3.36 (p &lt; 0.0001), and 2.42 (p = 0.0009). The risk signature was an independent prognostic factor for prediction survival. Moreover, the risk signature was related to immunity characteristics. In different tumor mutational burden (TMB) subgroups, it successfully categorizes patients into high-risk and low-risk groups, with significant differences of clinical outcome. Our eight-mRNA-based risk signature is a stable biomarker for urothelial cancer and might be able to predict which patients benefit from ICI treatment. It might play a role in precision individualized immunotherapy.


Author(s):  
Qian Xu ◽  
Yurong Chen

Aging is an inevitable time-dependent process associated with a gradual decline in many physiological functions. Importantly, some studies have supported that aging may be involved in the development of lung adenocarcinoma (LUAD). However, no studies have described an aging-related gene (ARG)-based prognosis signature for LUAD. Accordingly, in this study, we analyzed ARG expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). After LASSO and Cox regression analyses, a six ARG-based signature (APOC3, EPOR, H2AFX, MXD1, PLCG2, and YWHAZ) was constructed using TCGA dataset that significantly stratified cases into high- and low-risk groups in terms of overall survival (OS). Cox regression analysis indicated that the ARG signature was an independent prognostic factor in LUAD. A nomogram based on the ARG signature and clinicopathological factors was developed in TCGA cohort and validated in the GEO dataset. Moreover, to visualize the prediction results, we established a web-based calculator yurong.shinyapps.io/ARGs_LUAD/. Calibration plots showed good consistency between the prediction of the nomogram and actual observations. Receiver operating characteristic curve and decision curve analyses indicated that the ARG nomogram had better OS prediction and clinical net benefit than the staging system. Taken together, these results established a genetic signature for LUAD based on ARGs, which may promote individualized treatment and provide promising novel molecular markers for immunotherapy.


2021 ◽  
Author(s):  
Renjie Liu ◽  
Guifu Wang ◽  
Chi Zhang ◽  
Dousheng Bai

Abstract Background: Dysregulation of the balance between proliferation and apoptosis is the basis for human hepatocarcinogenesis. In many malignant tumors, such as hepatocellular carcinoma (HCC), there is a correlation between apoptotic dysregulation and poor prognosis. However, the prognostic values of apoptosis-related genes (ARGs) in HCC have not been elucidated. Methods: To screen for differentially expressed ARGs, the expression levels of 161 ARGs from The Cancer Genome Atlas (TCGA) database(https://cancergenome.nih.gov/) were analyzed. Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to evaluate the underlying molecular mechanisms of differentially expressed ARGs in HCC. The prognostic values of ARGs were established using Cox regression, and subsequently, a prognostic risk model for scoring patients was developed. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) curves were plotted to determine the prognostic value of the model. Results: Compared to normal tissues, 43 highly up-regulated and 8 down-regulated ARGs in HCC tissues were screened. GO analysis results revealed that these 51 genes are indeed related to the apoptosis function. KEGG analysis revealed that these 51 genes were correlated with MAPK, P53, TNF, and PI3K-AKT signaling pathways, while Cox regression revealed that 5 ARGs (PPP2R5B, SQSTM1, TOP2A, BMF, and LGALS3) were associated with prognosis and were, therefore, obtained to develop the prognostic model. Based on the median risk scores, patients were categorized into high-risk and low-risk groups. Patients in the low-risk groups exhibited significantly elevated two-year or five-year survival probabilities (p < 0.0001). The risk model had a better clinical potency than the other clinical characteristics, with the area under the ROC curve (AUC = 0.741). The prognosis of HCC patients was established from a plotted nomogram. Conclusion: Based on the differential expression of ARGs, we established a novel risk model for predicting HCC prognosis. This model can also be used to inform the individualized treatment of HCC patients.


2021 ◽  
Author(s):  
Ju Kun Wang ◽  
Ke Han ◽  
Chao Zhang ◽  
Xin Chen ◽  
Yu Li ◽  
...  

Purpose: ADME genes are genes involved in drug absorption, distribution, metabolism, and excretion (ADME). Previous studies report that expression levels of ADME-related genes correlate with prognosis of hepatocellular carcinoma (HCC) patients. However, the role of ADME gene expression on HCC prognosis has not been fully explored. This study sought to construct a prediction model using ADME-related genes for prognosis of HCC. Methods: Transcriptome and clinical data were retrieved from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), which were used as training and validation cohorts, respectively. A prediction model was constructed using univariate Cox regression and LASSO analysis. Patients were divided into high- and low-risk groups based on the median risk score. The predictive ability of the risk signature was estimated through bioinformatics analyses. Results: Six ADME-related genes (CYP2C9, ABCB6, ABCC5, ADH4, DHRS13, and SLCO2A1) were used to construct the prediction model with a good predictive ability. Univariate and multivariate Cox regression analyses showed the risk signature was an independent predictor of overall survival. A single-sample gene set enrichment analysis (ssGSEA) strategy showed a significant relationship between risk signature and immune status. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed differentially expressed genes in the high- and low-risk groups were enriched in biological process associated with metabolic and cell cycle pathways. Conclusion: A prediction model was constructed using six ADME-related genes for prediction of HCC prognosis. This signature can be used to improve HCC diagnosis, treatment, and prognosis in clinical use.


2021 ◽  
Author(s):  
Yuancheng Huang ◽  
Chaoyuan Huang ◽  
Xiaotao Jiang ◽  
Yanhua Yan ◽  
Kunhai Zhuang ◽  
...  

Abstract Objectives: The purpose of this study was to investigate the role of 13 m5C-related regulators in colon adenocarcinoma (COAD) and determine their prognostic value.Main Methods: Gene expression and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) datasets. The expression of m5C-related regulators were analyzed with clinicopathological characteristics and alterations within m5C-related regulators. Subsequently, different subtypes of patients with COAD were identified. Then, the prognostic value of m5C-related regulators in COAD were confirmed via univariate Cox regression and least absolute shrinkage and selection operator (LASSO) Cox regression analyses. The prognostic value of risk scores was evaluated using the Kaplan-Meier method, receiver operating characteristic (ROC) curves, and univariate and multivariate regression analyses. Additionally, Gene Set Enrichment Analysisc (GSEA), Kyoto Encyclopedia of Genes and Genomes c (KEGG) pathways, and Gene Ontologyc (GO) analysis were performed for biological functional analysis.Results: m5C-related regulators were found to be differentially expressed in COAD with different clinicopathological features. We observed a high alteration frequency in these genes, which were significantly correlated with their mRNA expression levels. Two clusters with different prognostic features were identified. Based on two independent prognostic m5C-related regulators (NSUN6 and ALYREF), a risk signature with good predictive significance was constructed. Univariate and multivariate Cox regression analyses suggested that the risk score was an independent prognostic factor. Biological processes and pathways associated with cancer, immune response, and RNA processing were identified.Conclusion: We revealed the genetic signatures and prognostic values of m5C-related regulators in COAD. Together, this has improved our understanding of m5C RNA modification and provided novel insights to identify predictive biomarkers and develop molecular targeted therapy for COAD.


2020 ◽  
Author(s):  
Yinglian Pan ◽  
LiPing Jia ◽  
Yuzhu Liu ◽  
Yiyu Han ◽  
Qian Li ◽  
...  

Abstract Background: Ovarian cancer (OV) is the most common type of primary female reproductive cancer. BRCA1/2 gene is an important biomarker for evaluating the risk of OV, breast cancer and other related tumors and influences patient choice of individualized treatment. A powerful signature to predict OV prognosis and improve treatment personalization is urgently needed. This study aimed to identify a novel OV-related lncRNA prognostic biomarker.Methods: A Univariate Cox proportional-hazards and multivariate Cox regression analyses were used to identifying prognostic factors from The Cancer Genome Atlas (TCGA) database. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was assessed, and the sensitivity and specificity of the prediction model were determined.Results: The signature consisting of two long noncoding RNAs(lncRNAs), Z98885.2 and AC011601.1, was selected as a criterion for classifying patients into high and low-risk groups (median survival: 7.2 years vs. 2.3 years). The 3-year overall survival (OS) rates for the high- and low-risk groups were approximately 38% and 100%, respectively. Chemotherapy treatment survival rates indicated that high-risk groups had significantly shorter OS rates with adjuvant chemotherapy than the low-risk groups. The OS of 1-, 3- and 5- years were 100%, 40%, and 15% in the high-risk groups respectively. The survival rate of the high-risk group declined rapidly after two years of OA chemotherapy treatment. In addition, multivariate Cox regression associated with other traditional clinical factors showed that the 2-lncRNA model could be used as an independent OV prognostic factor. Analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) indicated that these signatures are pivotal to cancer development.Conclusion: In conclusion, Z98885.2 and AC011601.1 comprise a novel prognostic signature for OV patients with in BRCA1/2 mutations to predict prognosis and chemotherapy efficiency.


2021 ◽  
Author(s):  
Junqi Qin ◽  
Zhanyu Xu ◽  
Fanglu Qin ◽  
Jiangbo Wei ◽  
Liqiang Yuan ◽  
...  

Abstract Background: There are few studies on the role of iron metabolism genes in predicting the prognosis of lung adenocarcinoma (LUAD). Our research aims to screen key genes and to establish a prognostic signature that can predict the overall survival rate of lung adenocarcinoma patients. Methods: Genes related to iron metabolism were downloaded from the GeneCards database; in addition, RNA-Seq data and corresponding clinical materials of 594 adenocarcinoma patients from The Cancer Genome Atlas(TCGA) were downloaded. GSE42127 of Gene Expression Omnibus (GEO) database was also further verified. The multi-gene prognostic signature was constructed by the Cox regression model of the Least Absolute Shrinkage and Selection Operator (LASSO). The clinical applicability of the model and its connection with immune cell infiltration was then analyzed. Results: We constructed a prediction signature with 12 genes (HAVCR1, SPN, GAPDH, ANGPTL4, PRSS3, KRT8, LDHA, HMMR, SLC2A1, CYP24A1, LOXL2, TIMP1) in the TCGA test set, and counted the patient's risk value based on this 12-gene signature; patients were split into high and low-risk groups. The survival graph results revealed that the survival prognosis between the high and low-risk groups was significantly different (TCGA: P <0.001, GEO: P = 0.001). Univariate and multivariate Cox regression analysis confirmed that the risk value is a predictor of patient OS (P<0.001). The area under the time-dependent ROC curve (AUC) indicated that our signature had a relatively high true positive rate when predicting the 1-year, 3-year, and 5-year OS of the TCGA cohort, which was 0.735, 0.711, and 0.601, respectively. The analysis of the nomogram and calibration curve showed the predictive ability of the gene model. In addition, immune-related pathways were highlighted in the functional enrichment analysis, and immune response between the two risk groups was observed to be significantly different. All of the results proved the reliability of our iron metabolism-related gene risk prognostic model. Conclusion: We developed and verified a 12-gene prognostic signature, which can help predict the prognosis of lung adenocarcinoma and offer a variety of targeted options for the precise treatment of lung cancer.


Sign in / Sign up

Export Citation Format

Share Document