MiR-425-5p Regulates Glucagon-like Peptide-1 Production and Affects Blood Glucose Levels in High-fat Diet-fed Mice

Author(s):  
Lirui Wei ◽  
Xuenan Zhao ◽  
Feng Guo ◽  
Fengjiao Huang ◽  
Yanyan Zhao ◽  
...  

Abstract BackgroundIn modern society, obesity has become a global problem with resulting in metabolic disorders and poses high risk for type 2 diabetes mellitus (T2DM). The glucagon-like peptide-1 (GLP-1) has been taken as an effective drug for the therapy of T2DM and obesity. In the present study, the regulatory roles and molecular mechanisms of miR-425-5p in GLP-1 secretion in high-fat diet (HFD)-induced diabetic mice were explored. MethodsOral glucose tolerance test and insulin tolerance test were performed to assess glucose metabolism and GLP-1 and LPS levels. Quantitative real time polymerase chain reaction (qRT-PCR) was employed to detect the expression of LPS, GLP-1, GLP-1 receptors, miR-425-5p, phosphatase and tensin homology (PTEN), proglucagon, p65 and β-catenin. Western blot was performed to determine the expression of proglucagon, p65, β-catenin and PTEN. ResultsThe results showed that plasma GLP-1 level was negatively correlated with plasma LPS level in HFD-fed mice, and miR-425-5p expression and LPS level were up-regulated in the ileal fluid compared with control groups. LPS injection boosted miR-425-5p expression in ileum. MiR-425-5p ameliorated glucose intolerance and insulin resistance in HFD-fed mice by increasing GLP-1 secretion. Furthermore, p65 protein level in the cytoplasmic and nuclear in the ileum of HFD-fed mice was increased compared with the control group. MiR-425-5p agomir elevated nuclear β-catenin protein level, but reduced PTEN protein level in HFD-fed mice compared with HFD-fed mice treated with the miR-425-5p antagomir. ConclusionsOur results suggest that miR-425-5p promotes GLP-1 secretion and improves glucose tolerance and insulin resistance in high-fat diet-fed mice.

2014 ◽  
Vol 307 (3) ◽  
pp. R332-R339 ◽  
Author(s):  
Jieyun Yin ◽  
Jian Kuang ◽  
Manisha Chandalia ◽  
Demidmaa Tuvdendorj ◽  
Batbayar Tumurbaatar ◽  
...  

The aim of this study was to investigate effects and mechanisms of electroacupuncture (EA) on blood glucose and insulin sensitivity in mice fed a high-fat diet. Both wild-type (WT) and adipose ectonucleotide pyrophosphate phosphodiesterase (ENPP1) transgenic (TG) mice were fed a high-fat diet for 12 wk; for each mouse, an intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were performed with or without EA at abdomen or auricular areas. A high-fat diet-induced insulin resistance in both WT and TG mice. In the WT mice, EA at 3 Hz and 15 Hz, but not at 1 Hz or 100 Hz, via CV4+CV12 significantly reduced postprandial glucose levels; EA at 3 Hz was most potent. The glucose level was reduced by 61.7% at 60 min and 74.5% at 120 min with EA at 3 Hz (all P < 0.001 vs. control). Similar hypoglycemic effect was noted in the TG mice. On the contrary, EA at auricular points increased postprandial glucose level ( P < 0.03). 4). EA at 3 Hz via CV4+CV12 significantly enhanced the decrease of blood glucose after insulin injection, suggesting improvement of insulin sensitivity. Plasma free fatty acid was significantly suppressed by 42.5% at 15 min and 50.8% at 30 min with EA ( P < 0.01) in both WT and TG mice. EA improves glucose tolerance in both WT and TG mice fed a high-fat diet, and the effect is associated with stimulation parameters and acupoints and is probably attributed to the reduction of free fatty acid.


Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 4768-4777 ◽  
Author(s):  
Claude Knauf ◽  
Patrice D. Cani ◽  
Afifa Ait-Belgnaoui ◽  
Alexandre Benani ◽  
Cédric Dray ◽  
...  

Glucagon-like peptide-1 (GLP-1) is a peptide released by the intestine and the brain. We previously demonstrated that brain GLP-1 increases glucose-dependent hyperinsulinemia and insulin resistance. These two features are major characteristics of the onset of type 2 diabetes. Therefore, we investigated whether blocking brain GLP-1 signaling would prevent high-fat diet (HFD)-induced diabetes in the mouse. Our data show that a 1-month chronic blockage of brain GLP-1 signaling by exendin-9 (Ex9), totally prevented hyperinsulinemia and insulin resistance in HFD mice. Furthermore, food intake was dramatically increased, but body weight gain was unchanged, showing that brain GLP-1 controlled energy expenditure. Thermogenesis, glucose utilization, oxygen consumption, carbon dioxide production, muscle glycolytic respiratory index, UCP2 expression in muscle, and basal ambulatory activity were all increased by the exendin-9 treatment. Thus, we have demonstrated that in response to a HFD, brain GLP-1 signaling induces hyperinsulinemia and insulin resistance and decreases energy expenditure by reducing metabolic thermogenesis and ambulatory activity.


2018 ◽  
Vol 314 (2) ◽  
pp. F181-F189 ◽  
Author(s):  
Honglei Guo ◽  
Bin Wang ◽  
Hongmei Li ◽  
Lilu Ling ◽  
Jianying Niu ◽  
...  

To investigate the role of glucagon-like peptide-1 analog (GLP-1) in high-fat diet-induced obesity-related glomerulopathy (ORG). Male C57BL/6 mice fed a high-fat diet for 12 wk were treated with GLP-1 (200 μg/kg) or 0.9% saline for 4 wk. Fasting blood glucose and insulin and the expression of podocin, nephrin, phosphoinositide 3-kinase (PI3K), glucose transporter type (Glut4), and microtubule-associated protein 1A/1B-light chain 3 (LC3) were assayed. Glomerular morphology and podocyte foot structure were evaluated by periodic acid-Schiff staining and electron microscopy. Podocytes were treated with 150 nM GLP-1 and incubated with 400 μM palmitic acid (PA) for 12 h. The effect on autophagy was assessed by podocyte-specific Glut4 siRNA. Insulin resistance and autophagy were assayed by immunofluorescence and Western blotting. The high-fat diet resulted in weight gain, ectopic glomerular lipid accumulation, increased insulin resistance, and fusion of podophyte foot processes. The decreased translocation of Glut4 to the plasma membrane and excess autophagy seen in mice fed a high-fat diet and in PA-treated cultured podocytes were attenuated by GLP-1. Podocyte-specific Glut4 siRNA promoted autophagy, and rapamycin-enhanced autophagy worsened the podocyte injury caused by PA. Excess autophagy in podocytes was induced by inhibition of Glut4 translocation to the plasma membrane and was involved in the pathology of ORG. GLP-1 restored insulin sensitivity and ameliorated renal injury by decreasing the level of autophagy.


Endocrinology ◽  
2016 ◽  
Vol 157 (9) ◽  
pp. 3405-3409 ◽  
Author(s):  
Darline Garibay ◽  
Anne K. McGavigan ◽  
Seon A. Lee ◽  
James V. Ficorilli ◽  
Amy L. Cox ◽  
...  

Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible for this remain incompletely defined. Glucagon-like peptide-1 (GLP-1) is a gut hormone that contributes to the maintenance of glucose homeostasis and is elevated after VSG. VSG-induced increases in postprandial GLP-1 secretion have been proposed to contribute to the glucoregulatory benefits of VSG; however, previous work has been equivocal. In order to test the contribution of enhanced β-cell GLP-1 receptor (GLP-1R) signaling we used a β-cell-specific tamoxifen-inducible GLP-1R knockout mouse model. Male β-cell-specific Glp-1rβ-cell+/+ wild type (WT) and Glp-1rβ-cell−/− knockout (KO) littermates were placed on a high-fat diet for 6 weeks and then switched to high-fat diet supplemented with tamoxifen for the rest of the study. Mice underwent sham or VSG surgery after 2 weeks of tamoxifen diet and were fed ad libitum postoperatively. Mice underwent oral glucose tolerance testing at 3 weeks and were euthanized at 6 weeks after surgery. VSG reduced body weight and food intake independent of genotype. However, glucose tolerance was only improved in VSG WT compared with sham WT, whereas VSG KO had impaired glucose tolerance relative to VSG WT. Augmentation of glucose-stimulated insulin secretion during the oral glucose tolerance test was blunted in VSG KO compared with VSG WT. Therefore, our data suggest that enhanced β-cell GLP-1R signaling contributes to improved glucose regulation after VSG by promoting increased glucose-stimulated insulin secretion.


Sign in / Sign up

Export Citation Format

Share Document