scholarly journals Prediction And Verification of Wafer Surface Morphology in Ultrasonic Vibration Assisted Wire Saw (UAWS) Slicing Single Crystal Silicon Based On Mixed Material Removal Mode

Author(s):  
Yan Wang ◽  
Rui Wang ◽  
Shusheng Li ◽  
Jianguo Liu ◽  
Lixing Song

Abstract Monocrystalline silicon is one of the most important semiconductor materials, widely used in chip manufacturing, solar panels. Slicing is the first step in making chips and the surface quality of silicon wafers directly affects the quality of later processing and accounts for a large proportion in the chip manufacturing cost. Ultrasonic vibration assisted wire saw (UAWS) is an effective sawing process for cutting hard and brittle materials such as monocrystalline Si, which can significantly improve the surface quality of silicon wafers. In order to further study the formation mechanism of the surface morphology of single crystal silicon sliced by UAWS, a new model for prediction of wafer surface morphology in UAWS slicing single crystal silicon based on mixed material removal mode is presented and verified in this paper. Firstly, the surface model of diamond wire saw tool is established by equal probability method. Then according to the equation of transverse vibration dynamics about the wire saw with ultrasonic excitation, the trajectory equation of arbitrary abrasive particles on the surface of wire saw is derived and analyzed. Thirdly, a new model for prediction of the wafer surface morphology based on mixed material removal mode is presented, which can be used to predict the wafer surface morphology of single crystal silicon sliced by UAWS. Finally, the prediction model is verified by UAWS slicing experiment, and the effects of slicing parameters such as wire saw speed, feed speed and workpiece rotate speed on the surface quality of silicon wafer were studied. It shows that the predicted wafer surface morphology and the experimental wafer surface morphology are similar in some characteristics, and the average error between the experimental and the theoretical values of the wafer surface roughness is 11.9%, which verifies the validity of the prediction model.

2010 ◽  
Vol 431-432 ◽  
pp. 265-268 ◽  
Author(s):  
Yu Fei Gao ◽  
Pei Qi Ge

Based on reciprocating electroplated diamond wire saw (REDWS) slicing experiments, a study on REDWS machining brittle-ductile transition of single crystal silicon was introduced. The machined surfaces and chips were observed by using Scanning Electron Microscope (SEM), and some experimental evidences of the change of material removal mode had been obtained. The experimental results indicate there is a close relationship between material removal mode and the ratio r value of ingot feed speed and wire speed, through controlling and adjusting the r value, the material removal mode can be complete brittle, partial ductile and near-ductile removal.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Weijia Guo ◽  
Senthil Kumar Anantharajan ◽  
Xinquan Zhang ◽  
Hui Deng

Abstract In this study, atmospheric-pressure (AP) plasma generated using He/O2/CF4 mixture as feed gas was used to etch the single-crystal silicon (100) wafer and the characteristics of the etched surface were investigated. The wafer morphology and surface elemental composition were analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The XPS results reveal that the fluorine element will be deposited on the wafer surface during the etching process when oxygen was not introduced as the feed gas. By detecting the energy and intensity of emitted particles, optical emission spectroscopy (OES) is used to identify the radicals in plasma. The fluorocarbon radicals generated during CF4 plasma ionization can form carbon fluoride polymer, which is considered as one factor to suppress the etching process. The roughness was measured to be changed with the increase in the etching time. The surface appears to be rougher at first when the plasma etching occurred on the subsurface damaged (SSD) layer, and the subsurface cracks would show on the surface after a short-time etching. After the damaged layer was fully removed, etching resulted in the formation of square-opening etching pits. During extended etching, the individual etching pits grew up and coalesced with one another; this coalescence provided an improved surface roughness. This study explains the AP plasma etching mechanism, and the formation of anisotropic surface etching pits at a microscale level for promoting the micromachining process.


Author(s):  
Jinyang Ke ◽  
Xiao Chen ◽  
Jianguo Zhang ◽  
Changlin Liu ◽  
Guoqing Xu ◽  
...  

Abstract Laser-assisted diamond cutting is a promising process for machining hard and brittle materials. A deep knowledge of material removal mechanism and attainable surface integrity are crucial to the development of this new technique. This paper focuses on the application of laser-assisted diamond cutting to single crystal silicon to investigate key characteristics of this process. The influence of laser power on the ductile machinability of single crystal silicon, in terms of the critical depth of cut for ductile-brittle transition in laser-assisted diamond cutting, is investigated quantitatively using a plunge-cut method. The experimental results reveal that this process can enhance the silicon’s ductility and machinability. The critical depth of cut has been increased by up to 330% with laser assistance, and its degree generally increases with the increase of laser power. The cross-sectional transmission electron microscope observation results indicate that laser-assisted diamond cutting is able to realize the subsurface damage free processing of single crystal silicon. In order to verify the ability of the laser-assisted diamond cutting to improve the surface quality, the face turning tests are also carried out. A significant improvement of surface quality has been obtained by laser-assisted diamond cutting: Sz (maximum height) has been reduced by 85% and Sa (arithmetical mean height) has been reduced by 45%.


2016 ◽  
Vol 1136 ◽  
pp. 350-356 ◽  
Author(s):  
Takaaki Suzuki ◽  
Toshinori Otsuki ◽  
Ji Wang Yan

Precision slicing tests were performed for single-crystal silicon by using a newly developed dicing wire saw system and diamond wires. The developed dicing wire saw enables slicing thick workpiece of hard and brittle materials which could not be sliced by conventional dicing machines. To achieve high precision and efficiency, the dicing wire saw system adopted tension control and high speed control technologies which provides a maximum wire feeding speed of 2000m/min. In this study, the diamond wire was driven in a single direction at a speed of 750-1750m/min and the slicing force, wire wear and workpiece surface roughness after slicing were investigated experimentally. The results showed that as a new slicing system, the developed dicing wire saw was useable for high-precision slicing of thick workpiece.


2000 ◽  
Vol 10 (4) ◽  
pp. 522-527 ◽  
Author(s):  
Mitsuhiro Shikida ◽  
Kenji Tokoro ◽  
Daisuke Uchikawa ◽  
Kazuo Sato

Sign in / Sign up

Export Citation Format

Share Document