scholarly journals Stabile SERS Encoded Silver Silica Nanocomposites for Industrial Labeling – The Case of COVID-19 Diagnosis

Author(s):  
Can Xiao ◽  
Bernat Mir Simón ◽  
Pilar Rivera-Gil

Abstract Biosensors, especially those with a SERS readout, are required for an early and precise healthcare diagnosis. Unreproducible SERS platforms hamper clinical SERS. Here we report a synthetic procedure to obtain stabile, reproducible and robust highly-SERS performing nanocomposites for labelling. We control the NPs agglomeration and codification which results in an increased number of hot spots, thus exhibiting reproducible and superior Raman enhancement. We studied fundamental aspects affecting the plasmonic thiol bond resulting in pH exhibiting a determining role. We validated their biosensing performance by designing a SERS-based ELISA SARS-CoV-2 detections assay which exhibits limits of detection below 0.01 ng/μL.

2021 ◽  
Author(s):  
Can Xiao ◽  
Bernat Mir de Simón ◽  
Pilar Rivera Gil

Abstract Biosensors, especially those with a SERS readout, are required for an early and precise healthcare diagnosis. Unreproducible SERS platforms hampers the clinical translation of SERS. Here we report a synthetic procedure to obtain stabile, reproducible and robust highly-SERS performing nanocomposites for labelling. We control the NPs agglomeration and codification which results in an increased number of hot spots, thus exhibiting reproducible and superior Raman enhancement. We studied fundamental aspects affecting the plasmonic thiol bond resulting in pH exhibiting a determining role. We validated their biosensing performance by designing a SERS-based sandwich immunoassay against COVID-19. The limits of detection for the recombinant SARS-CoV-2 protein is below 0.01 ng/μL. We offered herein one nanostructure with robust and homogeneous SERS signal which can be potentially applied for biodiagnosis.


2021 ◽  
Author(s):  
Chigusa Matsumoto ◽  
Masao Gen ◽  
Atsushi Matsuki ◽  
Takafumi Seto

Abstract We report a spray-drying method to fabricate silver nanoparticle (AgNP) aggregates for application in surface-enhanced Raman spectroscopy (SERS). A custom-built system was used to fabricate AgNP aggregates of three sizes, 48, 86, and 218 nm, from drying droplets containing AgNPs atomized from an AgNP suspension. Sample solutions of Rhodamine B (RhB) at 10–6, 10–8, and 10–10 M concentrations were dropped onto the AgNP aggregates as probe molecules to examine the enhancement of the Raman signals of the RhB. The ordering of the analytical enhancement factors (AEFs) by aggregate size at a given RhB concentration was 86 nm > 218 nm > 48 nm. The AEFs of the 86 nm AgNP aggregates were higher than those of the 218-nm aggregates, although the 218-nm aggregates had more hot spots where Raman enhancement occurred. This finding was attributable to the deformation and damping of the electron cloud in the highly aggregated AgNPs, reducing the sensitivity for Raman enhancement. When RhB was premixed with the AgNP suspension prior to atomization, the AEFs at 10–8 M RhB rose ~100-fold compared to those in the earlier experiments (the post-dropping route). This significant enhancement was probably caused by the increased opportunity for the trapping of the probe molecules in the hot spots.


Nanoscale ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 5612-5620 ◽  
Author(s):  
J. Prinz ◽  
C. Heck ◽  
L. Ellerik ◽  
V. Merk ◽  
I. Bald

DNA origami nanostructures are used to arrange gold nanoparticles into dimers with defined distance, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). Single dye molecules (TAMRA and Cy3) can be placed into the SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


Nature ◽  
2005 ◽  
Author(s):  
Deirdre Lockwood
Keyword(s):  

Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


2018 ◽  
Vol 52 (2) ◽  
pp. 519-534 ◽  
Author(s):  
V. E. Fedosov

Recent studies on Orthotrichoid mosses in Russia are summarized genus by genus. Orthotrichum furcatum Otnyukova is synonymized with Nyholmiella obtusifolia. Orthotrichum vittii is excluded from the Russian moss flora. Description of O. dagestanicum is amended. Fifty four currently recognized species from 9 genera of the Orthotrichaceae are presently known to occur in Russia; list of species with common synonyms and brief review of distribution in Russia is presented. Numerous problematic specimens with unresolved taxonomy were omitted for future. Revealed taxonomical inconsistencies in the genera Zygodon, Ulota, Lewinskya, Nyholmiella, Orthotrichum are briefly discussed. Main regularities of spatial differentiation of the family Orthotrichaceae in Russia are considered. Recently presented novelties contribute to the certain biogeographic pattern, indicating three different centers of diversity of the family, changing along longitudinal gradient. Unlike European one, continental Asian diversity of Orthotrichaceae is still poorly known, the Siberian specimens which were previously referred to European species in most cases were found to represent other, poorly known or undescribed species. North Pacific Region houses peculiar and poorly understood hot spot of diversity of Orthotrichoid mosses. Thus, these hot spots are obligatory to be sampled in course of revisions of particular groups, since they likely comprise under-recorded cryptic- or semi-cryptic species. Latitudinal gradient also contributes to the spatial differentiation of the revealed taxonomic composition of Orthotrichaceae.


Author(s):  
M. Palaniappan ◽  
V. Ng ◽  
R. Heiderhoff ◽  
J.C.H. Phang ◽  
G.B.M. Fiege ◽  
...  

Abstract Light emission and heat generation of Si devices have become important in understanding physical phenomena in device degradation and breakdown mechanisms. This paper correlates the photon emission with the temperature distribution of a short channel nMOSFET. Investigations have been carried out to localize and characterize the hot spots using a spectroscopic photon emission microscope and a scanning thermal microscope. Frontside investigations have been carried out and are compared and discussed with backside investigations. A method has been developed to register the backside thermal image with the backside illuminated image.


Sign in / Sign up

Export Citation Format

Share Document