scholarly journals Prognostic and predictive value of FCER1G in glioma outcomes and response to immunotherapy

2021 ◽  
Author(s):  
Houshi Xu ◽  
Qingwei Zhu ◽  
Lan Tang ◽  
Junkun Jiang ◽  
Huiwen Yuan ◽  
...  

Abstract Purpose: Glioma is the most prevalent malignant form of brain tumors, with a dismal prognosis. Currently, cancer immunotherapy has emerged as a revolutionary treatment for patients with advanced highly aggressive therapy-resistant tumors. However, there is no effective biomarker to reflect the response to immunotherapy in glioma patient so far. So we aim to assess the clinical predictive value of FCER1G in patients with glioma. Methods: The expression level and correlation between clinical prognosis and FER1G levels were analyzed with the data from CGGA, TCGA, and GEO database. Univariate and multivariate cox regression model was built to predict the prognosis of glioma patients with multiple factors. Then the correlation between FCER1G with immune cell infiltration and activation was analyzed. At last, we predict the immunotherapeutic response in both high and low FCER1G expression subgroups.Results: FCER1G was significantly higher in glioma with greater malignancy and predicted poor prognosis. In multivariate analysis, the hazard ratio of FCER1G expression (Low versus High) was 0.66 and 95% CI is 0.54 to 0.79 (P <0.001), whereas age (HR=1.26, 95% CI=1.04-1.52), grade (HR=2.75, 95% CI=2.06-3.68), tumor recurrence (HR=2.17, 95% CI=1.81-2.62), IDH mutant (HR=2.46, 95% CI=1.97-3.01) and chemotherapeutic status (HR=1.4, 95% CI=1.20-1.80) are also included. Furthermore, we illustrated that gene FCER1G stratified glioma cases into high and low FCER1G expression subgroups that demonstrated with distinct clinical outcomes and T cell activation. At last, we demonstrated that high FCER1G levels presented great immunotherapeutic response in glioma patients.Conclusions: This study demonstrated FCER1G as a novel predictor for clinical diagnosis, prognosis, and response to immunotherapy in glioma patient. Assess expression of FCER1G is a promising method to discover patients that may benefit from immunotherapy.

2020 ◽  
Author(s):  
Houshi Xu ◽  
Qingwei Zhu ◽  
Lan Tang ◽  
Junkun Jiang ◽  
Huiwen Yuan ◽  
...  

Abstract Purpose: Glioma is the most prevalent malignant form of brain tumors, with a dismal prognosis. Currently, cancer immunotherapy has emerged as a revolutionary treatment for patients with advanced highly aggressive therapy-resistant tumors. However, there is no effective biomarker to reflect the response to immunotherapy in glioma patient so far. So we aim to assess the clinical predictive value of FCER1G in patients with glioma. Methods: The expression level and correlation between clinical prognosis and FER1G levels were analyzed with the data from CGGA, TCGA, and GEO database. Univariate and multivariate cox regression model was built to predict the prognosis of glioma patients with multiple factors. Then the correlation between FCER1G with immune cell infiltration and activation was analyzed. At last, we predict the immunotherapeutic response in both high and low FCER1G expression subgroups.Results: FCER1G was significantly higher in glioma with greater malignancy and predicted poor prognosis. In multivariate analysis, the hazard ratio of FCER1G expression (Low versus High) was 0.66 and 95% CI is 0.54 to 0.79 (P <0.001), whereas age (HR=1.26, 95% CI=1.04-1.52), grade (HR=2.75, 95% CI=2.06-3.68), tumor recurrence (HR=2.17, 95% CI=1.81-2.62), IDH mutant (HR=2.46, 95% CI=1.97-3.01) and chemotherapeutic status (HR=1.4, 95% CI=1.20-1.80) are also included. Furthermore, we illustrated that gene FCER1G stratified glioma cases into high and low FCER1G expression subgroups that demonstrated with distinct clinical outcomes and T cell activation. At last, we demonstrated that high FCER1G levels presented great immunotherapeutic response in glioma patients.Conclusions: This study demonstrated FCER1G as a novel predictor for clinical diagnosis, prognosis, and response to immunotherapy in glioma patient. Assess expression of FCER1G is a promising method to discover patients that may benefit from immunotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Houshi Xu ◽  
Qingwei Zhu ◽  
Lan Tang ◽  
Junkun Jiang ◽  
Huiwen Yuan ◽  
...  

Abstract Purpose Glioma is the most prevalent malignant form of brain tumors, with a dismal prognosis. Currently, cancer immunotherapy has emerged as a revolutionary treatment for patients with advanced highly aggressive therapy-resistant tumors. However, there is no effective biomarker to reflect the response to immunotherapy in glioma patient so far. So we aim to assess the clinical predictive value of FCER1G in patients with glioma. Methods The expression level and correlation between clinical prognosis and FER1G levels were analyzed with the data from CGGA, TCGA, and GEO database. Univariate and multivariate cox regression model was built to predict the prognosis of glioma patients with multiple factors. Then the correlation between FCER1G with immune cell infiltration and activation was analyzed. At last, we predict the immunotherapeutic response in both high and low FCER1G expression subgroups. Results FCER1G was significantly higher in glioma with greater malignancy and predicted poor prognosis. In multivariate analysis, the hazard ratio of FCER1G expression (Low versus High) was 0.66 and 95 % CI is 0.54 to 0.79 (P < 0.001), whereas age (HR = 1.26, 95 % CI  1.04–1.52), grade (HR = 2.75, 95 % CI 2.06–3.68), tumor recurrence (HR = 2.17, 95 % CI  1.81–2.62), IDH mutant (HR = 2.46, 95 % CI 1.97–3.01) and chemotherapeutic status (HR = 1.4, 95 % CI  1.20–1.80) are also included. Furthermore, we illustrated that gene FCER1G stratified glioma cases into high and low FCER1G expression subgroups that demonstrated with distinct clinical outcomes and T cell activation. At last, we demonstrated that high FCER1G levels presented great immunotherapeutic response in glioma patients. Conclusions This study demonstrated FCER1G as a novel predictor for clinical diagnosis, prognosis, and response to immunotherapy in glioma patient. Assess expression of FCER1G is a promising method to discover patients that may benefit from immunotherapy.


Author(s):  
Adjimon G Lokossou ◽  
Caroline Toudic ◽  
Phuong Trang Nguyen ◽  
Xavier Elisseeff ◽  
Amandine Vargas ◽  
...  

Abstract Modulation of the activation status of immune cell populations during pregnancy depends on placental villous cytotrophoblast (VCT) cells and the syncytiotrophoblast (STB). Failure in the establishment of this immunoregulatory function leads to pregnancy complications. Our laboratory has been studying Syncytin-2 (Syn-2), an endogenous retroviral protein expressed in placenta and on the surface of placental exosomes. This protein plays an important role not only in STB formation through its fusogenic properties, but also through its immunosuppressive domain (ISD). Considering that Syn-2 expression is importantly reduced in preeclamptic placentas, we were interested in addressing its possible immunoregulatory effects on T cells. Activated Jurkat T cells and peripheral blood mononuclear cells (PBMCs) were treated with monomeric or dimerized version of a control or a Syn-2 ISD peptide. Change in phosphorylation levels of ERK1/2 MAP kinases was selectively noted in Jurkat cells treated with the dimerized ISD peptide. Upon incubation with the dimerized Syn-2 ISD peptide, significant reduction in Th1 cytokine production was further demonstrated by ELISA and Human Th1/Th2 Panel Multi-Analyte Flow Assay. To determine if exosome-associated Syn-2 could also be immunosuppressive placental exosomes were incubated with activated Jurkat and PBMCs. Quantification of Th1 cytokines in the supernatants revealed severe reduction in T cell activation. Interestingly, exosomes from Syn-2-silenced VCT incubated with PBMCs were less suppressive when compared with exosome derived from VCT transfected with control small interfering RNA (siRNA). Our results suggest that Syn-2 is an important immune regulator both locally and systemically, via its association with placental exosomes.


Author(s):  
Melanie R. Neeland ◽  
Sandra Andorf ◽  
Thanh D. Dang ◽  
Vicki L. McWilliam ◽  
Kirsten P. Perrett ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi92-vi92
Author(s):  
Mirco Friedrich ◽  
Lukas Bunse ◽  
Roman Sankowski ◽  
Wolfgang Wick ◽  
Marco Prinz ◽  
...  

Abstract The glioma microenvironment orchestrates tumor evolution, progression, and resistance to therapy. In high-grade gliomas, microglia and monocyte-derived macrophages constitute up to 70% of the tumor mass. However, the dynamics and phenotypes of intratumoral myeloid cells during tumor progression are poorly understood. Here we define myeloid cellular states in gliomas by longitudinal single-cell profiling and demonstrate their strict control by the tumor genotype. We report the unexpected and clinically highly relevant finding that human as well as murine gliomas with Isocitrate Dehydrogenase (IDH)1-R132H, a key oncogenic driver mutation of glioma, subdue their innate immune microenvironment by prompting a multifaceted reprogramming of myeloid and T cell metabolism. We employed integrated single-cell transcriptomic, time-of-flight mass cytometry and proteomic analyses of human healthy cortex control and glioma samples to identify myeloid cell subsets with distinct fates in IDH-mutated glioma that diverge from canonical trajectories of antigen-presenting cells as a result of a monocyte-to-macrophage differentiation block. Moving beyond single time point assessments, we now longitudinally describe differential immune cell infiltration and phenotype dynamics during glioma progression that are orchestrated by a fluctuating network of resident microglial cells and educated recruited immune cells. IDH mutations in glioma induce a tolerogenic alignment of their immune microenvironment through increased tryptophan uptake via large neutral amino acid transporter (LAT1)-CD98 and subsequent activation of the aryl hydrocarbon receptor (AHR) in educated blood-borne macrophages. In experimental tumor models, this immunosuppressive phenotype was reverted by LAT1-CD98 and AHR inhibitors. Taken together with direct effects on T cell activation, our findings not only link this oncogenic metabolic pathway to distinct immunosuppressive pathways but also provide the rationale and novel molecular targets for the development of immunotherapeutic concepts addressing the disease-defining microenvironmental effects of IDH mutations.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi94-vi94
Author(s):  
Daniela Lorizio ◽  
Michael Weller ◽  
Manuela Silginer ◽  
Alan Epstein ◽  
Patrick Roth

Abstract The profound local immunosuppressive microenvironment is one hallmark of glioblastoma, which results in resistance to most immunotherapeutic strategies that have been explored so far. Reverting this condition in order to reinvigorate anti-glioma immunity might be a promising therapeutic approach. Transforming growth factor (TGF)-β signaling is deregulated in different cancer types and contributes to the malignant phenotype of glioma cells. Glioma-derived TGF-β is also a major immunosuppressive factor in the tumor microenvironment. Furthermore, intratumoral regulatory T (Treg) cells and activated T effector cells express high levels of the co-stimulatory immune checkpoint glucocorticoid-induced tumor necrosis factor receptor (GITR). Agonistic anti-GITR antibodies have been explored in preclinical tumor models and are under investigation in clinical trials for the treatment of solid tumors. We evaluated the effect of TGF-β and GITR targeting on anti-tumor immune responses in syngeneic mouse glioma models. In co-culture settings, GITR modulation with a GITR ligand (GITRL)-Fc fusion protein, given alone or in combination with a pharmacological TGF-β receptor inhibitor, led to increased T cell activation. Furthermore, the combined targeting of the two pathways resulted in significantly higher immune cell-mediated tumor cell killing than either treatment alone. In vivo, TGF-β inhibition and GITR signaling modulation resulted in a higher fraction of long-term surviving glioma-bearing mice than single-agent treatment. Surviving mice were resistant to tumor re-challenge, suggesting adaptive immunity as an underlying mechanism. These data support the assumption that combined immunotherapeutic strategies may represent a promising approach for the treatment of glioma.


2020 ◽  
Vol 21 (19) ◽  
pp. 7424
Author(s):  
Nicholas J. Chandler ◽  
Melissa J. Call ◽  
Matthew E. Call

The impressive success of chimeric antigen receptor (CAR)-T cell therapies in treating advanced B-cell malignancies has spurred a frenzy of activity aimed at developing CAR-T therapies for other cancers, particularly solid tumors, and optimizing engineered T cells for maximum clinical benefit in many different disease contexts. A rapidly growing body of design work is examining every modular component of traditional single-chain CARs as well as expanding out into many new and innovative engineered immunoreceptor designs that depart from this template. New approaches to immune cell and receptor engineering are being reported with rapidly increasing frequency, and many recent high-quality reviews (including one in this special issue) provide comprehensive coverage of the history and current state of the art in CAR-T and related cellular immunotherapies. In this review, we step back to examine our current understanding of the structure-function relationships in natural and engineered lymphocyte-activating receptors, with an eye towards evaluating how well the current-generation CAR designs recapitulate the most desirable features of their natural counterparts. We identify key areas that we believe are under-studied and therefore represent opportunities to further improve our grasp of form and function in natural and engineered receptors and to rationally design better therapeutics.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2230 ◽  
Author(s):  
Nayang Shan ◽  
Ningshan Li ◽  
Qile Dai ◽  
Lin Hou ◽  
Xiting Yan ◽  
...  

Effector CD8+ T cell activation and its cytotoxic function are positively correlated with improved survival in breast cancer. tRNA-derived fragments (tRFs) have recently been found to be involved in gene regulation in cancer progression. However, it is unclear how interactions between expression of tRFs and T cell activation affect breast cancer patient survival. We used Kaplan–Meier survival and multivariate Cox regression models to evaluate the effect of interactions between expression of tRFs and T cell activation on survival in 1081 breast cancer patients. Spearman correlation analysis and weighted gene co-expression network analysis were conducted to identify genes and pathways that were associated with tRFs. tRFdb-5024a, 5P_tRNA-Leu-CAA-4-1, and ts-49 were positively associated with overall survival, while ts-34 and ts-58 were negatively associated with overall survival. Significant interactions were detected between T cell activation and ts-34 and ts-49. In the T cell exhaustion group, patients with a low level of ts-34 or a high level of ts-49 showed improved survival. In contrast, there was no significant difference in the activation group. Breast cancer related pathways were identified for the five tRFs. In conclusion, the identified five tRFs associated with overall survival may serve as therapeutic targets and improve immunotherapy in breast cancer.


Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2758 ◽  
Author(s):  
Masanori Oshi ◽  
Stephanie Newman ◽  
Vijayashree Murthy ◽  
Yoshihisa Tokumaru ◽  
Li Yan ◽  
...  

Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with higher mortality than the others. Pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) is considered as a surrogate to predict survival. Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) is a negative regulator of T cell activation, and reduction in ITPKC function is known to promote Kawasaki disease. Given the role of tumor infiltrating lymphocytes in NAC and since TNBC has the most abundant immune cell infiltration in breast cancer, we hypothesized that the ITPKC expression level is associated with NAC response and prognosis in TNBC. The ITPKC gene was expressed in the mammary gland, but its expression was highest in breast cancer cells among other stromal cells in a bulk tumor. ITPKC expression was highest in TNBC, associated with its survival, and was its independent prognostic factor. Although high ITPKC was not associated with immune function nor with any immune cell fraction, low ITPKC significantly enriched cell proliferation-related gene sets in TNBC. TNBC with low ITPKC achieved a significantly higher pCR rate after NAC. To the best of our knowledge, this is the first report to demonstrate that ITPKC gene expression may be useful as a prognostic and predictive biomarker in TNBC.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi129-vi129
Author(s):  
Marilin Koch ◽  
Mykola Zdioruk ◽  
M Oskar Nowicki ◽  
Estuardo Aguilar ◽  
Laura Aguilar ◽  
...  

Abstract RATIONALE Dexamethasone is frequently used in symptomatic treatment of glioma patients, although it is known to cause immune suppression. Checkpoint inhibitor immunotherapies have not yet been successful in glioma treatments. Gene-mediated cytotoxic immunotherapy (GMCI) is an immunotherapeutic approach that uses aglatimagene besadenovec with an anti-herpetic prodrug to induce immunogenic tumor cell death and immune cell attraction to the tumor site with potent CD8 T cell activation. GMCI is currently in clinical trials for solid tumors including glioblastoma, where it showed encouraging survival results in a Phase 2 study that did not limit the use of dexamethasone. However, the effects of dexamethasone on its efficacy have not been explored. METHODS We investigated the effects of dexamethasone on GMCI in vitro using cytotoxicity and T-cell-killing assays in glioblastoma cell lines. The impact of dexamethasone in vivo was assessed in an orthotopic syngeneic murine glioblastoma model. RESULTS Cyotoxicity assays showed that Dexamethasone has a slight impact on GMCI in vitro. In contrast, we observed a highly significant effect in T-cell-functional assays in which killing was greatly impaired. Immune cell response assays revealed a reduced T-cell proliferation after co-culture with supernatant from dexamethasone or combination treated glioblastoma cells in contrast to GMCI alone. In a murine model, the combination of GMCI and dexamethasone resulted in a significant reduction in median symptom-free survival (29d) in comparison to GMCI alone (39.5d) (P = 0.0184). CONCLUSION Our data suggest that high doses of dexamethasone may negatively impact the efficacy of immunotherapy for glioma, which may be a consequence of impaired T cell function. These results support the idea that there is a need in identifying possible alternatives to dexamethasone to maximize the effectiveness of immunostimulatory therapies such as GMCI.


Sign in / Sign up

Export Citation Format

Share Document