scholarly journals Curcumin Suppresses Tumorigenesis via Promoting SLC1A5-mediated Ferroptosis in Breast Cancer

2020 ◽  
Author(s):  
Xuelei Cao ◽  
Yao Li ◽  
Yongbin Wang ◽  
Xuezhi Zhang ◽  
Tao Yu ◽  
...  

Abstract Background: Breast cancer is one of the most malignant tumors in the female. Previous studies confirmed that Curcumin, a kind of polyphenol compound extract from the Curcuma longa underground rhizome, inhibits the survival of cancer cells. However, the functional role and mechanism of curcumin in breast cancer remain unclear.Methods: The cell counting kit-8 (CCK-8) assay was performed to examine the effect of curcumin on cell viability in both MDA-MB-453 and MCF-7 cells. Determination of lipid reactive oxygen species (ROS) level, malondialdehyde (MDA) production, and intracellular Fe2+ level was used to evaluate the effect of curcumin on cell ferroptosis. The protein levels were determined by western blot. A xenograft tumor model was employed to verify the antitumorigenic effect of curcumin on breast cancer in vivo.Results: Curcumin treatment significantly suppressed breast cancer cell viability in a dose-dependent manner. Moreover, curcumin triggered ferroptosis by enhancing the levels of lipid ROS, lipid peroxidation end-product MDA accumulation, and intracellular Fe2+. Mechanistically, curcumin administration impeded tumor growth via upregulating solute carrier family 1 member 5 (SLC1A5)-mediated ferroptosis in breast cancer. In vivo experiments showed that curcumin could effectively hamper the growth of tumors without noticeable side effects.Conclusion: We demonstrated that curcumin exhibits anti-tumorigenesis activity in breast cancer by promoting SLC1A5-mediated ferroptosis, providing a potential therapeutic agent for the treatment of breast cancer.

2020 ◽  
Author(s):  
Xiang Song ◽  
Xinzhao Wang ◽  
Zhaoyun Liu ◽  
Zhiyong Yu

Abstract Background: Gefitinib exhibits antitumor activity in the patients with breast cancer, but the resistance to gefitinib in triple negative breast cancer (TNBC) is a new concern. Glutathione peroxidase 4 (GPX4) is a leading regulator of ferroptosis, which is of importance for the survival of TNBC cells. This study investigated GPX4-mediated ferroptosis in gefitinib sensitivity in TNBC.Methods: Gefitinib resistant TNBC cells MDA-MB-231/Gef and HS578T/Gef were constructed, and treated with lentivirus sh-GPX4 and ferroptosis inhibitor ferrostatin-1. GPX4 expression, cell viability and apoptosis were detected. Malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) levels were evaluated. The levels of ferroptosis-related proteins ACSL4, PTGS2, NOX1 and FTH1 were detected. Subcutaneous tumor model was established in nude mice, and gefitinib was intraperitoneally injected. Apoptosis was detected by TUNEL staining and Ki-67 expression was detected by immunohistochemistry.Results: GPX4 was increased in gefitinib-resistant cells. After silencing GPX4, the inhibition rate of cell viability increased, the limitation of colony formation ability reduced, apoptosis rate increased, and the sensitivity of cells to gefitinib was improved. After silencing GPX4, MDA level and ROS production were significantly increased, while GSH level was decreased. Silencing GPX4 promoted ferroptosis. After inhibition of ferroptosis by ferrostatin-1, it revealed that inhibition of GPX4 promoted gefitinib sensitivity by promoting cell ferroptosis. In vivo experiments also showed that inhibition of GPX4 enhanced the anticancer effect of gefitinib through promoting ferroptosis.Conclusion: Inhibition of GPX4 stimulated ferroptosis and thus enhanced TNBC cell sensitivity to gefitinib.


2020 ◽  
Author(s):  
Dilihumaer Tuluhong ◽  
Tao Chen ◽  
Jingjie Wang ◽  
Huijuan Zeng ◽  
Hanjun Li ◽  
...  

Abstract Background Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our study was to detect the functions of FZD2 and explore its mechanism in BC. Methods The level of FZD2 was measured in BC tissues by quantitative realtime polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC) respectively. Cell Counting Kit-8 (CCK-8), standard colony formation, transwell aasays, wound healing and flow cytometry experiments were adopted separately to test cell viability, invasion, migration, apoptosis and cell cycle distribution. Epithelial-mesenchymal transition (EMT) biomarker were determined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo. Results We determined that FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway. Conclusion Based on all these data, we concluded that FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.


2020 ◽  
Vol 10 ◽  
Author(s):  
Xiang Song ◽  
Xinzhao Wang ◽  
Zhaoyun Liu ◽  
Zhiyong Yu

Gefitinib resistance in triple negative breast cancer (TNBC) is a growing important concern. Glutathione peroxidase 4 (GPX4) is a main regulator of ferroptosis, which is pivotal for TNBC cell growth. We investigated GPX4-mediated ferroptosis in gefitinib sensitivity in TNBC. Gefitinib resistant TNBC cells MDA-MB-231/Gef and HS578T/Gef were constructed and treated with lentivirus sh-GPX4 and ferroptosis inhibitor ferrostatin-1. GPX4 expression, cell viability and apoptosis were detected. Malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS) levels were evaluated. The levels of ferroptosis-related proteins were detected. Subcutaneous tumor model was established in nude mice, and gefitinib was intraperitoneally injected to evaluate tumor growth, apoptosis, and Ki-67 expression. GPX4 was increased in gefitinib-resistant cells. After silencing GPX4, the inhibition rate of cell viability was increased, the limitation of colony formation ability was reduced, apoptosis rate was increased, and the sensitivity of cells to gefitinib was improved. After silencing GPX4, MDA and ROS production were increased, while GSH was decreased. Silencing GPX4 promoted ferroptosis. Inhibition of GPX4 promoted gefitinib sensitivity by promoting cell ferroptosis. In vivo experiments also revealed that inhibition of GPX4 enhanced the anticancer effect of gefitinib through promoting ferroptosis. Overall, inhibition of GPX4 stimulated ferroptosis and enhanced TNBC cell sensitivity to gefitinib.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dilihumaer Tuluhong ◽  
Tao Chen ◽  
Jingjie Wang ◽  
Huijuan Zeng ◽  
Hanjun Li ◽  
...  

Abstract Background Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor 2 (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our current study was to detect the functions of FZD2 in BC and explore its underlying molecular mechanism. Methods The level of FZD2 was measured in BC tissues by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC), respectively. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell assays, wound healing assay and flow cytometry analyses were separately conducted to detect cell viability, invasion, migration, apoptosis and cell cycle distribution. The levels of Epithelial-mesenchymal transition (EMT) biomarkers were examined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo. Results FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis in BC patients. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT process in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway. Conclusion FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.


2020 ◽  
Author(s):  
Dilihumaer Tuluhong ◽  
Tao Chen ◽  
Jingjie Wang ◽  
Huijuan Zeng ◽  
Hanjun Li ◽  
...  

Abstract Background: Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our study was to detect the functions of FZD2 and explore its mechanism in BC.Methods: The level of FZD2 was measured in BC tissues by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC) respectively. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell assays, wound healing assay and flow cytometry analyses were conducted separately to test cell viability, invasion, migration, apoptosis and cell cycle distribution. Epithelial-mesenchymal transition (EMT) biomarkers were determined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo.Results: FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway.Conclusion: FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.


2020 ◽  
Author(s):  
Dilihumaer Tuluhong ◽  
Tao Chen ◽  
Jingjie Wang ◽  
Huijuan Zeng ◽  
Hanjun Li ◽  
...  

Abstract Background Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our study was to detect the functions of FZD2 and explore its mechanism in BC. Methods The level of FZD2 was measured in BC tissues by quantitative realtime polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC) respectively. Cell Counting Kit-8 (CCK-8), standard colony formation, transwell aasays, wound healing and flow cytometry experiments were adopted separately to test cell viability, invasion, migration, apoptosis and cell cycle distribution. Epithelial-mesenchymal transition (EMT) biomarker were determined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo . Results We determined that FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway. Conclusion Based on all these data, we concluded that FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.


2021 ◽  
Author(s):  
Dilihumaer Tuluhong ◽  
Tao Chen ◽  
Jingjie Wang ◽  
Huijuan Zeng ◽  
Hanjun Li ◽  
...  

Abstract Background: Breast cancer (BC) is one of the commonest female cancers, which is characterized with high incidence. Although treatments have been improved, the prognosis of BC patients in advanced stages remains unsatisfactory. Thus, exploration of the molecular mechanisms underneath BC progression is necessary to find novel therapeutic methods. Frizzled class receptor (FZD2) belongs to Frizzled family, which has been proven to promote cell growth and invasion in various human cancers. The purpose of our current study was to detect the functions of FZD2 in BC and explore its underlying molecular mechanism.Methods: The level of FZD2 was measured in BC tissues by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunohistochemistry (IHC), respectively. Cell Counting Kit-8 (CCK-8), colony formation assay, transwell assays, wound healing assay and flow cytometry analyses were separately conducted to detect cell viability, invasion, migration, apoptosis and cell cycle distribution. The levels of Epithelial-mesenchymal transition (EMT) biomarkers were examined by using Immunofluorescence assay. Xenograft tumorigenicity assay was performed to assess the effect of FZD2 on tumor growth in vivo.Results: FZD2 mRNA and protein expression was abundant in BC tissues. Moreover, high level of FZD2 had significant correlation with poor prognosis in BC patients. In vitro functional assays revealed that silencing of FZD2 had suppressive effects on BC cell growth, migration and invasion. Animal study further demonstrated that FZD2 silencing inhibited BC cell growth in vivo. In addition, FZD2 induced EMT process in BC cells in a transforming growth factor (TGF)-β1-dependent manner. Mechanistically, knockdown of FZD2 led to the inactivation of Notch signaling pathway.Conclusion: FZD2 facilitates BC progression and promotes TGF-β1-inudced EMT process through activating Notch signaling pathway.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Jung Ok Lee ◽  
Min Ju Kang ◽  
Won Seok Byun ◽  
Shin Ae Kim ◽  
Il Hyeok Seo ◽  
...  

Abstract Background Chemotherapy is a standard therapeutic regimen to treat triple-negative breast cancer (TNBC); however, chemotherapy alone does not result in significant improvement and often leads to drug resistance in patients. In contrast, combination therapy has proven to be an effective strategy for TNBC treatment. Whether metformin enhances the anticancer effects of cisplatin and prevents cisplatin resistance in TNBC cells has not been reported. Methods Cell viability, wounding healing, and invasion assays were performed on Hs 578T and MDA-MB-231 human TNBC cell lines to demonstrate the anticancer effects of combined cisplatin and metformin treatment compared to treatment with cisplatin alone. Western blotting and immunofluorescence were used to determine the expression of RAD51 and gamma-H2AX. In an in vivo 4T1 murine breast cancer model, a synergistic anticancer effect of metformin and cisplatin was observed. Results Cisplatin combined with metformin decreased cell viability and metastatic effect more than cisplatin alone. Metformin suppressed cisplatin-mediated RAD51 upregulation by decreasing RAD51 protein stability and increasing its ubiquitination. In contrast, cisplatin increased RAD51 expression in an ERK-dependent manner. In addition, metformin also increased cisplatin-induced phosphorylation of γ-H2AX. Overexpression of RAD51 blocked the metformin-induced inhibition of cell migration and invasion, while RAD51 knockdown enhanced cisplatin activity. Moreover, the combination of metformin and cisplatin exhibited a synergistic anticancer effect in an orthotopic murine model of 4T1 breast cancer in vivo. Conclusions Metformin enhances anticancer effect of cisplatin by downregulating RAD51 expression, which represents a novel therapeutic target in TNBC management.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


Author(s):  
Jingjing Yang ◽  
Yulu Zhou ◽  
Shuduo Xie ◽  
Ji Wang ◽  
Zhaoqing Li ◽  
...  

Abstract Background Ferroptosis is a newly defined form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxidation and is involved in various pathophysiological conditions, including cancer. Targeting ferroptosis is considered to be a novel anti-cancer strategy. The identification of FDA-approved drugs as ferroptosis inducers is proposed to be a new promising approach for cancer treatment. Despite a growing body of evidence indicating the potential efficacy of the anti-diabetic metformin as an anti-cancer agent, the exact mechanism underlying this efficacy has not yet been fully elucidated. Methods The UFMylation of SLC7A11 is detected by immunoprecipitation and the expression of UFM1 and SLC7A11 in tumor tissues was detected by immunohistochemical staining. The level of ferroptosis is determined by the level of free iron, total/lipid Ros and GSH in the cells and the morphological changes of mitochondria are observed by transmission electron microscope. The mechanism in vivo was verified by in situ implantation tumor model in nude mice. Results Metformin induces ferroptosis in an AMPK-independent manner to suppress tumor growth. Mechanistically, we demonstrate that metformin increases the intracellular Fe2+ and lipid ROS levels. Specifically, metformin reduces the protein stability of SLC7A11, which is a critical ferroptosis regulator, by inhibiting its UFMylation process. Furthermore, metformin combined with sulfasalazine, the system xc− inhibitor, can work in a synergistic manner to induce ferroptosis and inhibit the proliferation of breast cancer cells. Conclusions This study is the first to demonstrate that the ability of metformin to induce ferroptosis may be a novel mechanism underlying its anti-cancer effect. In addition, we identified SLC7A11 as a new UFMylation substrate and found that targeting the UFM1/SLC7A11 pathway could be a promising cancer treatment strategy.


Sign in / Sign up

Export Citation Format

Share Document