Effects of Subzero Temperatures and Seawater Immersion on Damage Initiation and Growth in Sandwich Composites

2008 ◽  
Author(s):  
Barry D. Davidson
2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


1997 ◽  
Author(s):  
Clinton Chapman ◽  
John Whitcomb ◽  
Clinton Chapman ◽  
John Whitcomb

Alloy Digest ◽  
1952 ◽  
Vol 1 (3) ◽  

Abstract Berylco 25S alloy is the high-performance beryllium-copper spring material of 2 percent nominal beryllium content. It responds to precipitation-hardening for maximum mechanical properties. It has high elastic and endurance strength, good electrical and thermal conductivity, excellent resistance to wear and corrosion, high corrosion-fatigue strength, good resistance to moderately elevated temperatures, and no embrittlement or loss of normal ductility at subzero temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-3. Producer or source: Beryllium Corporation.


Alloy Digest ◽  
1980 ◽  
Vol 29 (11) ◽  

Abstract The 21/4% Nickel Steel possesses a combination of moderate strength and superior resistance to brittle fracture at subzero temperatures. It is one of the most economical materials for the construction of equipment to operate at temperatures as low as -90 F. It is intended primarily for welded pressure vessels. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-378. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
1983 ◽  
Vol 32 (4) ◽  

Abstract TRI-MARK TM-811N2 is a flux-cored welding electrode for all position semiautomatic arc welding. It is designed to weld 2-3% nickel steels for applications requiring good toughness at subzero temperatures; in addition, it is used to weld various other high-strength low-alloy steels and various fine-grained steels with low-temperature toughness. Tri-Mark TM-811N2 is used to deposit typically 2.35% nickel steel weld metal with good low-temperature impact properties. It is used for shipbuilding, oil rigs and similar structures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SA-389. Producer or source: Tri-Mark Inc..


Author(s):  
Matthew E M Yunik ◽  
Neil B Chilton

Abstract The northern distributional limit of Dermacentor variabilis Say, the American dog tick, is expanding in Saskatchewan and Manitoba (western Canada). The ability of D. variabilis to continue to expand its range northwards will depend upon the ability of individuals within populations at the species distributional edge to withstand very low temperatures during winter. One component of cold hardiness is the supercooling point (SCP), the temperature below 0°C at which an individual freezes. In this study, the SCP was determined for 94 questing D. variabilis adults (44 females and 50 males) from an established population near Blackstrap Provincial Park in Saskatchewan. SCP values ranged from −18.2 to −6.7°C, with a median of −13.3°C. This suggests that host-seeking D. variabilis adults differ in their ability to survive exposure to subzero temperatures, for at least a short period of time, without freezing. The distribution of SCPs was bimodal, but there was no significant difference in SCP values between female and male ticks, and no relationship between SCP and tick body weight. It remains to be determined what factors contribute to the variation in SCP values among questing D. variabilis adults.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Jairan Nafar Dastgerdi ◽  
Fariborz Sheibanian ◽  
Heikki Remes ◽  
Hossein Hosseini Toudeshky

This paper provides further understanding of the peak load effect on micro-crack formation and residual stress relaxation. Comprehensive numerical simulations using the finite element method are applied to simultaneously take into account the effect of the surface roughness and residual stresses on the crack formation in sandblasted S690 high-strength steel surface under peak load conditions. A ductile fracture criterion is introduced for the prediction of damage initiation and evolution. This study specifically investigates the influences of compressive peak load, effective parameters on fracture locus, surface roughness, and residual stress on damage mechanism and formed crack size. The results indicate that under peak load conditions, surface roughness has a far more important influence on micro-crack formation than residual stress. Moreover, it is shown that the effect of peak load range on damage formation and crack size is significantly higher than the influence of residual stress. It is found that the crack size develops exponentially with increasing peak load magnitudes.


Sign in / Sign up

Export Citation Format

Share Document