Breast Cancer Chemoresistance Mechanisms Through PI 3-Kinase and Akt Signaling

2014 ◽  
Author(s):  
Alex Toker ◽  
Kristin Brown
2020 ◽  
Vol 111 (9) ◽  
pp. 3279-3291 ◽  
Author(s):  
Qi Chen ◽  
Huiling Shen ◽  
Xiaolan Zhu ◽  
Yueqin Liu ◽  
Hui Yang ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Samuel J. Rodgers ◽  
Lisa M. Ooms ◽  
Viola M. J. Oorschot ◽  
Ralf B. Schittenhelm ◽  
Elizabeth V. Nguyen ◽  
...  

AbstractINPP4B suppresses PI3K/AKT signaling by converting PI(3,4)P2 to PI(3)P and INPP4B inactivation is common in triple-negative breast cancer. Paradoxically, INPP4B is also a reported oncogene in other cancers. How these opposing INPP4B roles relate to PI3K regulation is unclear. We report PIK3CA-mutant ER+ breast cancers exhibit increased INPP4B mRNA and protein expression and INPP4B increased the proliferation and tumor growth of PIK3CA-mutant ER+ breast cancer cells, despite suppression of AKT signaling. We used integrated proteomics, transcriptomics and imaging to demonstrate INPP4B localized to late endosomes via interaction with Rab7, which increased endosomal PI3Kα-dependent PI(3,4)P2 to PI(3)P conversion, late endosome/lysosome number and cargo trafficking, resulting in enhanced GSK3β lysosomal degradation and activation of Wnt/β-catenin signaling. Mechanistically, Wnt inhibition or depletion of the PI(3)P-effector, Hrs, reduced INPP4B-mediated cell proliferation and tumor growth. Therefore, INPP4B facilitates PI3Kα crosstalk with Wnt signaling in ER+ breast cancer via PI(3,4)P2 to PI(3)P conversion on late endosomes, suggesting these tumors may be targeted with combined PI3K and Wnt/β-catenin therapies.


2010 ◽  
Vol 29 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Carlos A. Castaneda ◽  
Hernán Cortes-Funes ◽  
Henry L. Gomez ◽  
Eva M. Ciruelos

2017 ◽  
Vol 13 (6) ◽  
pp. 4685-4690 ◽  
Author(s):  
Yazhuo Liu ◽  
Ruoyu Wang ◽  
Lichuan Zhang ◽  
Jianhua Li ◽  
Keli Lou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document