scholarly journals Screening Cover Crops for Use in Conservation Tillage Systems for Vegetables Following Spring Plowing

HortScience ◽  
1991 ◽  
Vol 26 (7) ◽  
pp. 860-862 ◽  
Author(s):  
Wendy A. Nelson ◽  
Brian A. Kahn ◽  
B. Warren Roberts

Several prospective cover crops were sown into 1-m2 monoculture plots on 9 Mar. 1987 and 10 Mar. 1988 at Bixby, Okla., and on 14 Mar. 1988 at Lane, Okla., after sites were plowed and fitted. Densities and dry weights of cover crops and weeds were determined in late April or early May of both years. Plots also were evaluated for degree of kill by glyphosate in 1988. Fourteen cover crops were screened at Bixby in 1987. Kentucky bluegrass (Poa pratensis L.) and three fescues (Festuca rubra L., Festuca rubra L. var. commutata Gaud.-Beaup., and Festuca elatior L.) were eliminated from further consideration due to inadequate cover density and inability to suppress weeds. Screenings of the 10 remaining covers were conducted at both locations in 1988. Annual ryegrass (Lolium multiflorum L.) and three small grains [rye (Secale cereale L.), barley (Hordeum vulgare L.), and wheat (Triticum aestivum L.)] were the most promising cover crops with respect to cover density, competitiveness against weeds, and degree of kill by glyphosate. Crimson clover (Trifolium incarnatum L.) and hairy vetch (Vicia villosa Roth) were the most promising legumes, but they generally were less satisfactory than the grassy covers in all tested aspects. A single application of glyphosate was ineffective in killing hairy vetch at both locations. Chemical name used: N-(phosphonomethyl)glycine (glyphosate).

1988 ◽  
Vol 34 (3) ◽  
pp. 201-206 ◽  
Author(s):  
C. S. Rothrock ◽  
W. L. Hargrove

The influence of winter legume cover crops and of tillage on soil populations of fungal genera containing plant pathogenic species in the subsequent summer sorghum crop were examined in field studies. Legume cover crops significantly increased populations of Pythium spp. throughout the sorghum crop compared with a rye cover crop or no cover crop. This stimulation of the populations of Pythium spp. was not solely due to colonization of cover-crop residue, as populations were significantly greater at the time the legume cover crop was desiccated. Removal of aboveground residue generally decreased populations of Pythium spp. in soil. Incorporation of residue by tillage increased populations of Pythium spp. at some sampling dates. Legumes differed in the magnitude of stimulation, with hairy vetch stimulating Pythium spp. more than crimson clover. Cover crop treatments did not consistently influence soil populations of Fusarium spp., Rhizoctonia solani, Rhizoctonia-like binucleate fungi, or Macrophomina phaseolina. Macrophomina phaseolina populations were significantly greater under no tillage.


HortScience ◽  
1998 ◽  
Vol 33 (7) ◽  
pp. 1163-1166 ◽  
Author(s):  
John R. Teasdale ◽  
Aref A. Abdul-Baki

Hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) and mixtures of rye with hairy vetch and/or crimson clover were compared for no-tillage production of staked, fresh-market tomatoes (Lycopersicon esculentum Mill.) on raised beds. All cover crops were evaluated both with or without a postemergence application of metribuzin for weed control. Biomass of cover crop mixtures were higher than that of the hairy vetch monocrop. Cover crop nitrogen content varied little among legume monocrops and all mixtures but was lower in the rye monocrop. The C:N ratio of legume monocrops and all mixtures was <30 but that of the rye monocrop was >50, suggesting that nitrogen immobilization probably occurred only in the rye monocrop. Marketable fruit yield was similar in the legume monocrops and all mixtures but was lower in the rye monocrop when weeds were controlled by metribuzin. When no herbicide was applied, cover crop mixtures reduced weed emergence and biomass compared to the legume monocrops. Despite weed suppression by cover crop mixtures, tomatoes grown in the mixtures without herbicide yielded lower than the corresponding treatments with herbicide in 2 of 3 years. Chemical name used: [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one](metribuzin).


HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Aref A. Abdul-Baki ◽  
J.R. Teasdale ◽  
R. Korcak ◽  
D.J. Chitwood ◽  
R.N. Huettel

A low-input sustainable agricultural system for the production of staked, fresh-market field tomatoes (Lycopersicon esculentum Mill.) is described. The system uses winter annual cover crops to fix N, recycle leftover nutrients, produce biomass, and prevent soil erosion throughout the winter and spring. Yields of tomato plants grown in hairy vetch (Vicia villosa Roth), crimson clover (Trifolium incarnatum L.), and rye (Secale cereale L.) plus hairy vetch mulches were higher than those grown in the conventional black polyethylene (BP) mulch system in 2 of 3 years. Fruit were heavier with the plant mulches than with BP mulch. Eight weeks after transplanting, N levels in tomato leaves were higher with plant than with BP mulch, although the plant mulch plots received only 50% of the N applied to the BP plots. The cover crops had no effect on populations of five phytoparasitic nematode species.


1996 ◽  
Vol 121 (3) ◽  
pp. 586-591 ◽  
Author(s):  
Vasey N. Mwaja ◽  
John B. Masiunas ◽  
Catherine E. Eastman

The effect of cover-crop management on growth and yield of `Bravo' cabbage (Brassica oleracea var. Capitata L.), `Market Pride' tomato (Lycopersicon esculentum Mill.), and `Mustang' snap bean (Phaseolus vulgaris L.) was determined. Each fall, `Wheeler' winter rye (Secale cereale L.) and `Oregon Crown' hairy vetch (Vicia villosa Roth) were interseeded. The following spring, the cover crops were killed by either applying glyphosate and mowing (CC-G) or mowing and disking (CC-D). Trifluralin was preplant incorporated into bare ground as a conventional tillage (CT) treatment. In 1992 and 1993, a chicken (Gallus gallus L.) based fertilizer was applied to half the subplots. The greatest snap bean and cabbage yields were in CT. The system with the greatest tomato yields varied. In 1991, the greatest tomato yields were in the CT treatment, while in 1992 yields were greatest in the CT and CC-D treatments, and in 1993 the greatest yields were in CT and CC-G. Cabbage yields were greater in the fertilized than the unfertilized treatments. In 1992, infestations of diamondback moth, imported cabbageworm, and cabbage looper were greater in CT than in the CC-G treatment. Three years of the CC-G treatment increased soil organic matter from 3.07% to 3.48% and increased soil pH from 6.30 to 6.51, while neither changed in the CT. Chemical names used: N-(phosphonomethyl) glycine (glyphosate); 2,6-dinitro-N,N-dipro`pyl-4-(trifluoromethyl) benzenamine (trifluralin).


Weed Science ◽  
1987 ◽  
Vol 35 (1) ◽  
pp. 95-98 ◽  
Author(s):  
Prasanta C. Bhowmik

A red fescue (Festuca rubraL.)- Kentucky bluegrass (Poa pratensisL.) turf was treated annually with amidochlor {N-[(acetylamino)methyl]-2-chloro-N-(2,6-diethylphenyl)acetamide} at 2.2, 2.8, and 3.4 kg ai/ha, mefluidide {N-[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl] amino] phenyl] acetamide} at 0.4 kg ai/ha, and ethephon [(2-chloroethyl) phosphonic acid] at 5.6 kg ai/ha for three consecutive years. Recuperative potential of treated turfgrass was determined in the field and in a greenhouse study. Amidochlor and mefluidide treatments injured turfgrass (11 to 64%) four weeks after application. However, turfgrass recovered after eight weeks. Amidochlor at 2.8 to 3.4 kg/ha and mefluidide at 0.4 kg/ha suppressed (75 to 100%) seedhead development. Ethephon at 5.6 kg/ha was ineffective. Turfgrass recovered normally each spring after amidochlor treatments, with no delay in spring green-up. Root length, root weight, and root:shoot weight ratio of the plugs from the greenhouse study were unaffected by three consecutive annual applications of amidochlor, mefluidide, and ethephon. One annual spring application of amidochlor, mefluidide, and ethephon for three consecutive years caused no adverse effects that would limit their use on red fescue-Kentucky bluegrass turf.


2017 ◽  
Vol 31 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as component of Midwest corn and soybean production systems has led to the need for additional research, including the effects of residual corn and soybean herbicide treatments on fall cover crop establishment. Field studies were conducted in 2013, 2014, and 2015 in Columbia, Missouri to investigate the effects of common residual herbicides applied in corn and soybean on establishment of winter wheat, tillage radish, cereal rye, crimson clover, winter oat, Austrian winter pea, Italian ryegrass, and hairy vetch. Cover crops were evaluated for stand and biomass reduction 28 d after emergence (DAE). Rainfall from herbicide application to cover crop seeding date was much greater in 2014 and 2015, which resulted in less carryover in these years compared to 2013. When averaged across all herbicides evaluated in these experiments, the general order of sensitivity of cover crops to herbicide carryover, from greatest to least was Austrian winter pea=crimson clover>oilseed radish>Italian ryegrass>hairy vetch>wheat >winter oat>cereal rye. Cereal rye had the fewest instances of biomass or stand reduction with only four out of the 27 herbicides adversely effecting establishment. Pyroxasulfone consistently reduced Italian ryegrass and winter oat biomass at least 67% in both the corn and soybean experiments. In the soybean experiment, imazethapyr- and fomesafen-containing products resulted in severe stand and biomass reduction in both years while flumetsulam-containing products resulted in the greatest carryover symptoms in the corn experiment. Results from these experiments suggest that several commonly used corn and soybean herbicides have the potential to hinder cover crop establishment, but the severity of damage will depend on weather, cover crop species, and the specific herbicide combination.


Weed Science ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 421-423
Author(s):  
J. M. Hodgson

Herbicides were evaluated for selectivity between three tall coarse grasses and three short fine grasses. Reed canarygrass (Phalaris arundinaceaL.), quackgrass [Agropyron repens(L.) Beauv.], and smooth brome (Bromus inermisLeyss) were consistently more susceptible to amitrole-NH4CN (3-amino-s-triazole-ammonium thiocyanate) than three desirable short grasses, Kentucky bluegrass (Poa pratensisL.), creeping red fescue (Festuca rubraL.), and redtop (Agrostis albaL.). Reed canarygrass and redtop were more susceptible to dalapon (2,2-dichloropropionic acid) than creeping red fescue. Amitrole-NH4CN and dalapon combinations were more toxic to reed canarygrass, smooth brome, and redtop than creeping red fescue. Pyriclor (2,3,5-trichloro-4-pyridinol) was quite toxic to all grasses with Kentucky bluegrass showing the most tolerance. When TCA (trichloroacetic acid) was combined with amitrole-NH4CN results were similar to the dalapon combination but overall toxicity was reduced.


2019 ◽  
Vol 34 (1) ◽  
pp. 48-54
Author(s):  
Kara B. Pittman ◽  
Charles W. Cahoon ◽  
Kevin W. Bamber ◽  
Lucas S. Rector ◽  
Michael L. Flessner

AbstractCover crops provide a number of agronomic benefits, including weed suppression, which is important as cases of herbicide resistance continue to rise. To effectively suppress weeds, high cover crop biomass is needed, which necessitates later termination timing. Cover crop termination is important to mitigate potential planting issues and prevent surviving cover crop competition with cash crops. Field studies were conducted in Virginia to determine the most effective herbicide options alone or combined with glyphosate or paraquat to terminate a range of cover crop species. Results revealed that grass cover crop species were controlled (94% to 98%) by glyphosate alone 4 wk after application (WAA). Overall, legume species varied in response to the single active-ingredient treatments, and control increased with the addition of glyphosate or paraquat. Mixes with glyphosate provided better control of crimson clover and hairy vetch by 7% to 8% compared with mixes containing paraquat 4 WAA. Mix partner did not influence control of Austrian winter pea. No treatment adequately controlled rapeseed in this study, with a maximum of 58% control observed with single active-ingredient treatments and 62% control with mixes. Height reduction for all cover crop species supports visible rating data. Rapeseed should be terminated when smaller, which could negate weed suppressive benefits from this cover crop species. Growers should consider herbicide selection and termination timing in their cover crop plan to ensure effective termination.


2015 ◽  
Vol 29 (3) ◽  
pp. 412-418 ◽  
Author(s):  
Matthew S. Wiggins ◽  
M. Angela McClure ◽  
Robert M. Hayes ◽  
Lawrence E. Steckel

Field experiments were conducted in 2013 and 2014 in Jackson, TN, to evaluate the efficacy of integrating cover crops and POST herbicides in corn to control glyphosate-resistant (GR) Palmer amaranth. Crimson clover and hairy vetch were planted in the fall and accumulated greater than 1,600 kg ha−1aboveground biomass by time of termination. Crimson clover and hairy vetch provided 62% and 58% Palmer amaranth control 14 d before application, respectively. POST herbicide treatments of glyphosate +S-metolachlor + mesotrione + atrazine, thiencarbazone-methyl + tembotrione + atrazine, and glyphosate + atrazine were applied when Palmer amaranth reached 15 cm tall. The herbicide treatments provided greater than 95% control of Palmer amaranth 28 d after application. In addition to Palmer amaranth suppression, corn was taller at V5 and V7 following a hairy vetch cover crop. Hairy vetch and crimson clover residues provided early season weed suppression because of biomass accumulation. Palmer amaranth in the nontreated control plots reached 15 cm 4 and 3 d ahead of the cover-treated plots in 2013 and 2014, respectively. This could potentially increase POST herbicide-application flexibility for producers. Results of this trial also suggest that cover crops alone are not a means of season-long control of GR Palmer amaranth. From a herbicide resistance-management perspective, the integration of cover crops with herbicide mixtures that incorporate multiple sites of action should aid in mitigating the further selection of herbicide resistance in Palmer amaranth.


Sign in / Sign up

Export Citation Format

Share Document