scholarly journals Carambola Growth and Leaf Gas-exchange Responses to Seismic or Wind Stress

HortScience ◽  
1992 ◽  
Vol 27 (8) ◽  
pp. 913-915 ◽  
Author(s):  
Thomas E. Marler ◽  
Yasmina Zozor

Growth and leaf gas-exchange responses of carambola (Averrhoa carambola L.) seedlings to wind or seismic stress were studied under glasshouse conditions. Forty days of twice daily seismic stress applied for 10 seconds consistently reduced carambola height, leaf area, dry weight, relative growth rate, and leaf-area ratio, but increased trunk cross-sectional area compared with plants receiving no seismic stress. Fifty-one days of wind load reduced plant height, leaf area, dry weight, trunk cross-sectional area, net assimilation rate, relative growth rate, leaf-area ratio, and stomatal conductance compared with plants receiving no wind stress. Morphological appearance was similar for plants receiving wind or seismic stress. Net CO2 assimilation of carambola leaflets was reduced by 30 minutes of wind load for up to 6 hours following the stress. Results suggest that wind may reduce carambola growth at least partially by influencing leaf gas exchange or by the mechanical stress associated with wind.

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1859
Author(s):  
Saeid Hassanpour-bourkheili ◽  
Mahtab Heravi ◽  
Javid Gherekhloo ◽  
Ricardo Alcántara-de la Cruz ◽  
Rafael De Prado

Wild poinsettia (Euphorbia heterophylla L.) is a difficult-to-control weed in soybean production in Brazil that has developed resistance to herbicides, including acetolactate synthase inhibitors. We investigated the potential fitness cost associated to the Ser-653-Asn mutation that confers imazamox resistance in this weed. Plant height, leaf and stem dry weight, leaf area and seed production per plant as well as the growth indices of specific leaf area, leaf area ratio, relative growth rate and net assimilation in F2 homozygous resistant (R) and susceptible (S) wild poinsettia progenies were pairwise compared. S plants were superior in most of the traits studied. Plant heights for S and R biotypes, recorded at 95 days after planting (DAP), were 137 and 120 cm, respectively. Leaf areas were 742 and 1048 cm2 in the R and S biotypes, respectively. The dry weights of leaves and stems in the S plants were 30 and 35%, respectively, higher than in the R plants. In both biotypes, the leaves had a greater share in dry weight at early development stages, but from 50 DAP, the stem became the main contributor to the dry weight of the shoots. The R biotype produced 110 ± 4 seed plant−1, i.e., 12 ± 3% less seeds per plant than that of the S one (125 ± 7 seed plant−1). The growth indices leaf area ratio and specific leaf area were generally higher in the S biotype or similar between both biotypes; while the relative growth rate and net assimilation rate were punctually superior in the R biotype. These results demonstrate that the Ser-653-Asn mutation imposed a fitness cost in imazamox R wild poinsettia.


Author(s):  
Harun Özer ◽  
Mehtap Özbakır Özer ◽  
Ahmet Balkaya

This study were carried out to of different sowing time in order to determine the effects on plant growth of kohlrabi cultivation under Samsun condaitions during the autumn growing periods in unheated greenhouse. Four different seed sowing times (1st September, 15th September 1st October, 15th October), two different kohlrabi cultivars (Kolibri F1 and Korist F1) and two mulch applications (mulch covered and uncovered) were used in this study.The plant growth parameters analyzed (total plant dry weight, leaf area ratio, specific leaf area, net assimilation rate and relative growth rate) were found statistically significant (p<0.05). The highest total plant dry weight (114.1 g) was obtained from mulch application and 1st September seed sowing time. The highest leaf area ratio value were obtained in both mulch application the Kolibri F1 variety grown on October 15th. The highest net assimilation rate (0.65 g cm-2 day-1*1000) and relative growth rate (0.0090 g g day-1) were obtained from mulch covered plants grown in Kolibri varieties during September 1st. As a result, in this study higher dry matter accumulation was achieved by 1st September seed sowing times in vegetable growing in the last season in the greenhouse. In this way, the plants have successfully grown up and increased their productivity by entering the winter months, when the temperature and light intensity are decreasing.


2014 ◽  
Vol 32 (1) ◽  
pp. 8-12 ◽  
Author(s):  
Lindsey Fox ◽  
Amber Bates ◽  
Thayne Montague

For three growing seasons (2003–2005) two newly planted, field-grown redbud (Cercis canadensis L.) varieties were subjected to three reference evapotranspiration (ETo)-based irrigation regimes (100, 66, and 33% ETo). Over this time period, water relations (pre-dawn leaf water potential), gas exchange (mid-day stomatal conductance), and growth data (trunk cross sectional area increase, tree leaf area, and shoot elongation) were measured. Pre-dawn leaf water potential (ψl) was more negative for trees receiving the least amount of irrigation, and for Mexican redbud [C. canadensis var. mexicana (Rose) M. Hopkins] trees. However, mid-day stomatal conductance (gs) was similar for Texas redbud (C. canadensis var. texensis S. Watson) trees across the three irrigation regimes, and was highest for Mexican redbud trees receiving the greatest amount of irrigation volume. Growth varied by variety and irrigation regime. Trunk cross sectional area increase was greatest for Mexican redbud trees, leaf area was highest for trees receiving the greatest amount of irrigation, and shoot elongation was greatest for trees receiving the 66% ETo irrigation regime. However, despite differing irrigation volumes, greatest gas exchange and growth was not necessarily associated with greatest irrigation volume. When considering conservation of precious water resources, these redbud varieties maintain adequate growth and appearance under reduced irrigation.


1994 ◽  
Vol 8 (1) ◽  
pp. 154-158 ◽  
Author(s):  
William E. Haigler ◽  
Billy J. Gossett ◽  
James R. Harris ◽  
Joe E. Toler

The growth, development, and reproductive potential of several populations of organic arsenical-susceptible (S) and -resistant (R) common cocklebur biotypes were compared under noncompetitive field conditions. Plant height, leaf area, aboveground dry weights, and relative growth rate (RGR) were measured periodically during the growing season. Days to flowering, bur dry weight, and number of burs per plant were also recorded. Arsenical S- and R-biotypes were similar in all measured parameters of growth, development, and reproductive potential. Populations within each biotype varied occasionally in plant height, leaf area, aboveground dry weights, and reproductive potential.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6501
Author(s):  
Mohammad Ajlouni ◽  
Audrey Kruse ◽  
Jorge A. Condori-Apfata ◽  
Maria Valderrama Valencia ◽  
Chris Hoagland ◽  
...  

Crop growth analysis is used for the assessment of crop yield potential and stress tolerance. Capturing continuous plant growth has been a goal since the early 20th century; however, this requires a large number of replicates and multiple destructive measurements. The use of machine vision techniques holds promise as a fast, reliable, and non-destructive method to analyze crop growth based on surrogates for plant traits and growth parameters. We used machine vision to infer plant size along with destructive measurements at multiple time points to analyze growth parameters of spring wheat genotypes. We measured side-projected area by machine vision and RGB imaging. Three traits, i.e., biomass (BIO), leaf dry weight (LDW), and leaf area (LA), were measured using low-throughput techniques. However, RGB imaging was used to produce side projected area (SPA) as the high throughput trait. Significant effects of time point and genotype on BIO, LDW, LA, and SPA were observed. SPA was a robust predictor of leaf area, leaf dry weight, and biomass. Relative growth rate estimated using SPA was a robust predictor of the relative growth rate measured using biomass and leaf dry weight. Large numbers of entries can be assessed by this method for genetic mapping projects to produce a continuous growth curve with fewer replicates.


1988 ◽  
Vol 18 (1) ◽  
pp. 131-134
Author(s):  
Daniel K. Struve ◽  
W. Timothy Rhodus

The basal 1 cm of taproot of dormant bareroot 1-0 red oak (Quercusrubra L.) seedlings were given a 3-s dip in 20, 40, or 80 mM concentrations of indole-3-butyric acid (IBA), phenyl indole-3-thiolobutyrate (P-ITB), or equal parts IBA and P-ITB at 20 or 40 mM concentrations. Sixty control seedlings were dipped in 95% ethanol, while 30 seedlings were used for each auxin treatment. Seedlings were potted on May 12, 1986, and grown outdoors. At the end of the 104-day study period, all concentrations of IBA and P-ITB significantly increased number of roots regenerated (from 5.3 with 20 mM IBA to 11.9 for 80 mM IBA) compared with control seedlings. However, P-ITB-treated seedlings produced significantly more leaves (20–24) and leaf area (320–472 cm2), and up to 10 g more dry weight than IBA and non-auxin-treated seedlings. P-ITB treated seedlings had higher relative growth and net assimilation rates and lower leaf area ratio than IBA-treated or control seedlings. Seedlings treated with 20 mM of equal parts IBA and P-ITB were similar to P-ITB-treated seedlings while seedlings treated with the 40 mM IBA and P-ITB combination were similar to IBA-treated seedlings.


2012 ◽  
Vol 30 (2) ◽  
pp. 317-325 ◽  
Author(s):  
R.C. Souza ◽  
A.C. Dias ◽  
M.R.A. Figueiredo ◽  
F.E.B. Obara ◽  
P.J Christoffoleti

The aim of this research paper was to compare the growth of D. ciliaris and D. nuda crabgrass species under non-competitive conditions. To this end, two experiments were conducted, one from March - July 2010 and the other from February - June 2011. The experimental design of both trials was completely randomized making a factorial (2 seasons x 2 species crabgrass x 12 evaluation periods) with four replications. Assessments began at 15 days after sowing (DAS), and repeated weekly until 92 DAS. The variables evaluated were total dry matter (roots+leaves+stems), leaf area, leaf number and tiller. The results were submitted to analysis of variance and the absolute growth rate, relative growth rate and leaf area ratio were calculated using the means, which were adjusted regression models. The crabgrass species were significantly different in leaf area, leaf number, tiller number and dry matter per plant. D. ciliaris for all variables was statistically higher than D. nuda. Regarding the speed at which the growth of the species occurred, the absolute growth rate and relative growth rate of D. ciliaris was also greater than D. nuda. In addition, D. ciliaris also had a lower leaf area ratio indicating greater efficiency in converting light energy into carbohydrates. It can be concluded that D. ciliaris has a higher growth rate in conditions where there is no limitation of nutrients and water availability in relation to D. nuda, mainly due to D. ciliaris have greater leaf area, number of leaves and dry matter accumulation per plant.


1989 ◽  
Vol 7 (1) ◽  
pp. 41-45 ◽  
Author(s):  
T.G. Ranney ◽  
N.L. Bassuk ◽  
T.H. Whitlow

Abstract Dormant pruning, a film antitranspirant, and soil-applied paclobutrazol were evaluated as transplanting treatments in newly transplanted ‘Colt’ cherry trees under irrigated and water-stressed conditions. Under irrigated conditions all three treatments were effective in reducing plant water loss. However, all three treatments resulted in large reductions in mean growth rate, mean relative growth rate, root dry weight, and root surface area. The pruning treatment had no effect on the leaf area:root area ratio whereas the antitranspirant treatment resulted in an increased leaf area:root area ratio, a response considered undesirable. Paclobutrazol decreased the leaf area:root area ratio but also induced abnormal radial enlargement of plant roots. Under water-stressed conditions all three treatments were effective in reducing plant water loss and were successful in delaying plant water stress. Both pruned and antitranspirant treated plants had improved relative growth rates as compared to the controls.


2017 ◽  
Vol 2 (1) ◽  
pp. 015
Author(s):  
Satiti Ratnasari ◽  
Eka Tarwaca Susila Putra ◽  
Didik Indradewa

Aluminum (Al) contained in acidic soil could become an obstacle for plant growth. The Al toxicity could inhibit root growth, water and nutrient absorption. One of the solution to overcome Al toxicity was by applying Silica (Si). The aim of this research was to study the impacts of Al to the growth activity of oil palm and to know the effects of Si to the growth activity of oil palm contaminated by Al. The factorial treatments were arranged in a complete random design with two factors. The first factor was Al toxicity, i.e. with and without Al, while the second factor was the application of Si that consisted of four levels (0, 32, 64, 96 gram per plant). some of variables included leaf area ratio (LAR), leaf area, net assimilation rate (NAR), relative growth ratio (RGR), plant height, and plant dry weight were observed. The result showed that Al toxicity decreased the LAR, leaf area, NAR, RGR, plant height, and plant dry weight. The application of Si 32 gram per plant increased leaf area ratio and was not significantly different from the application of 96 gram Si per plant. However, the application of Si to oil palm contaminated with Al did not affect to relative grow rate, but its application to normal plant would increase the relative growth ratio.


Sign in / Sign up

Export Citation Format

Share Document