scholarly journals Methanethiol Production by Brassica Vegetables Held in Anaerobic Atmospheres

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 823C-823
Author(s):  
Charles F. Forney ◽  
Michael A. Jordan

Methanethiol (MT) is a volatile compound responsible for the strong off-odor that is evolved when fresh broccoli is held under anaerobic atmospheres. Inductive atmospheres can develop in modified-atmosphere packages, resulting in reduced quality. To determine if related vegetables are capable of producing MT, 12 different vegetables from the genus Brassica were cut into ready-to-eat forms. Fifty-gram samples of these cut vegetables were sealed in 500-ml glass jars and flushed with N2. After flushing, jars were held for 24 h at 20C in the dark. Headspace samples from the jars then were analyzed for MT and other volatiles using a GC-MS> The concentration of MT was greatest in jars containing broccoli florets. Broccoli flower buds removed from florets produced 40 times more MT than peduncle and stem tissues (38.3 vs. 0.87 mmol·m–3). Headspace concentration of MT (mmol·m–3) in jars containing these different vegetables was: broccoli florets, 22.7; pak choi leaf blades, 17.8; savoy cabbage, 12.4; broccoflower, 7.5; green storage cabbage, 5.2; red cabbage, 2.7; kale, 0.81; Brussels sprouts, 0.36; pak choi petioles, 0.28; rutabaga root, 0.26; cauliflower florets, 0.18; Chinese cabbage, 0.03; and kohlrabi tubers, 0.02. In addition to MT, ethanol, dimethyl disulfide, and dimethyl trisulfide were detected in the headspace over each of the 12 vegetables. The contribution of these induced compounds to off-odor development in packaged, precut vegetables will be discussed.

HortScience ◽  
1999 ◽  
Vol 34 (4) ◽  
pp. 696-699 ◽  
Author(s):  
Charles F. Forney ◽  
Michael A. Jordan

Methanethiol (MT) is a volatile compound responsible for the unpleasant odor evolved when fresh broccoli (Brassica oleracea L., Italica group) is held under anaerobic conditions. Inductive atmospheres can develop in storage, transportation containers, or modified atmosphere packages, resulting in reduced quality. To determine if related vegetables are capable of producing MT, 12 different vegetables from the genus Brassica were cut into ready-to-eat forms. Fifty-gram samples were sealed in 500-mL glass jars and flushed with N2. After 24 h in the dark at 20 °C, headspace samples from the jars were analyzed for MT and other volatiles. Headspace concentration of MT was greatest in broccoli florets, followed by pak choi (Brassica rapa L., Chinensis group) leaf blades, savoy cabbage (Brassica oleracea L., Capitata group), broccoflower (Brassica oleracea L., Botrytis group), and green and red cabbage (Brassica oleracea L., Capitata group). Broccoli stems, kale (Brassica oleracea L., Acephala group), Brussels sprouts (Brassica oleracea L., Gemmifera group), pak choi petioles, rutabaga (Brassica napus L., Napobrassica group) root, cauliflower (Brassica oleracea L., Botrytis group) florets, Chinese cabbage (Brassica rapa L., Pekinensis group), and kohlrabi (Brassica oleracea L., Gongylodes group) tubers produced <3% of the MT produced by broccoli florets. Green tissues appeared to have a greater capacity to produce MT than nongreen tissues. Anaerobic production of CO2 and ethanol did not relate to the vegetable's ability to produce MT. The production of dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS) were also induced by the anaerobic conditions. Green cabbage produced the greatest concentration of DMDS, followed by savoy cabbage and broccoli florets. Production of DMTS was similar to the pattern observed for MT, but DMDS production was not highly correlated with MT production.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S85-S88 ◽  
Author(s):  
M. Dekker ◽  
K. Hennig ◽  
R. Verkerk

The thermal stability of individual glucosinolates within five different Brassica vegetables was studied at 100°C for different incubation times up to 120 minutes. Three vegetables that were used in this study were <I>Brassica oleracea</I> (red cabbage, broccoli and Brussels sprouts) and two were <I>Brassica rapa</I> (pak choi and Chinese cabbage). To rule out the influence of enzymatic breakdown, myrosinase was inactivated prior to the thermal treatments. The stability of three glucosinolates that occurred in all five vegetables (gluconapin, glucobrassicin and 4-methoxyglucobrassicin) varied considerably between the different vegetables. The degradation could be modeled by first order kinetics. The rate constants obtained varied between four to twenty fold between the five vegetables. Brussels sprouts showed the highest degradation rates for all three glucosinolates. The two indole glucosinolates were most stable in red cabbage, while gluconapin was most stable in broccoli. These results indicate the possibilities for plant breeding to select for cultivars in which glucosinolates are more stable during processing.


2009 ◽  
Vol 134 (6) ◽  
pp. 632-640 ◽  
Author(s):  
Li Huang ◽  
Wan-zhi Ye ◽  
Ting-ting Liu ◽  
Jia-shu Cao

Cytological features of ‘Aijiaohuang’ chinese cabbage-pak-choi (Brassica campestris ssp. chinensis) Bcajh97-01A/B genic male-sterile AB line were examined to determine phenotypic reasons for male sterility. The sterile line Bcajh97-01A was found to undergo aberrant cytokinesis during male meiosis. Transcriptional profiling of the flower buds of both fertile and sterile plants was performed at the periods preceding meiosis, at the tetrad to uninucleate pollen period, and at the binucleate to mature pollen period. Transcript-derived fragments (TDFs) from corresponding genes that were expressed in flower buds at these three different stages could be divided into nine classes. We sequenced a total of 14 new TDFs that were differentially displayed at particular pollen developmental stages, including eight genes with unknown or hypothetical functions and six genes showing significant homology with known genes. This characterization of the Bcajh97-01A genic male-sterile line allowed the identification of candidate genes underlying genic male sterility.


Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4734
Author(s):  
Sylwia Bajkacz ◽  
Magdalena Ligor ◽  
Irena Baranowska ◽  
Bogusław Buszewski

The main aim of this study was to develop a method for the isolation and determination of polyphenols—in particular, flavonoids present in various morphological parts of plants belonging to the cabbage family (Brassicaceae). Therefore, a procedure consisting of maceration, acid hydrolysis and measurement of the total antioxidant capacity of plant extracts (using DPPH assay) was conducted. Qualitative analysis was performed employing thin-layer chromatography (TLC), which was presented to be a suitable methodology for the separation and determination of chemopreventive phytochemicals from plants belonging to the cabbage family. The study involved the analysis of 25 vegetal samples, including radish, broccoli, Brussels sprouts, kale, canola, kohlrabi, cabbage, Chinese cabbage, red cabbage, pak choi and cauliflower. In addition, selected flavonoids content in free form and bonded to glycosides was determined by using an RP-UHPLC-ESI-MS/MS method.


2008 ◽  
Vol 35 (12) ◽  
pp. 1194 ◽  
Author(s):  
Li Huang ◽  
Jiashu Cao ◽  
Ai-Hong Zhang ◽  
Yu-Chao Zhang ◽  
Yi-Qun Ye

Comparative expression profiling of flower buds in two male sterile lines [genic male sterile (GMS) and cytoplasmic male sterile (CMS)] with its male fertile maintainer line in Chinese cabbage pak-choi was performed using cDNA-AFLP technology to identify the genes implicated in male sterility. A novel gene BcMF10, sharing high sequence similarity to the function-unknown DUF1216 family in Arabidopsis was isolated, whose expression was absent in the flower buds of the GMS and CMS lines but present in the male fertile maintainer line. Temporal and spatial expression pattern analysis revealed that BcMF10 began to be expressed in tapetal cells and microspores during meiosis. Expression in tapetal cells was persistent until the degeneration of tapetum, and expression in microspores reached a peak during the tetrad stage but gradually declined as development proceeded. RNA interference technology was used to address the biological function of BcMF10. The RNAi transgenic Chinese cabbage pak-choi lines showed normal vegetative growth and reproductive development, but poor pollen germination. Scanning electron microscopy (SEM) showed that most of the transgenic pollen was deformed and exhibited an irregular shape with an abnormal number and distribution of germinal furrows. It is speculated that BcMF10 may encode a protein that plays a role in the formation of intine wall.


2021 ◽  
Vol 84 (3) ◽  
pp. 219-231
Author(s):  
Yu Wang ◽  
Qianru Zhou ◽  
Wei Yang ◽  
Qianzhan Yang ◽  
Xuejing Zhang ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 974
Author(s):  
Marc-Kevin Zinn ◽  
Marco Singer ◽  
Dirk Bockmühl

Although malodour formation on textiles and in washing machines has been reported to be a very relevant problem in domestic laundry, the processes leading to bad odours have not been studied intensively. In particular, the smell often described as “wet-and-dirty-dustcloth-like malodour” had not been reproduced previously. We developed a lab model based on a bacterial mixture of Micrococcus luteus, Staphylococcus hominis, and Corynebacterium jeikeium, which can produce this odour type and which might allow the detailed investigation of this problem and the development of counteractions. The model uses bacterial strains that have been isolated from malodourous textiles. We could also show that the three volatile compounds dimethyl disulfide, dimethyl trisulfide, and indole contribute considerably to the “wet-fabric-like” malodour. These substances were not only found to be formed in the malodour model but have already been identified in the literature as relevant malodourous substances.


2017 ◽  
Vol 27 (4) ◽  
pp. 510-516
Author(s):  
Aaron Heinrich ◽  
Shinji Kawai ◽  
Jim Myers

Growing resistant cultivars from the Brassicaceae family (brassicas) is an effective strategy to minimize crop loss caused by the soilborne pathogen Plasmodiophora brassicae (clubroot). However, there are many clubroot pathotypes, and genetic resistance to clubroot may be pathotype-specific. To determine which pathotypes are present in western Oregon, diseased roots were collected from five farms and identified by the European clubroot differential (ECD) set. To assess resistance to the identified pathotypes, 21 vegetable cultivars from nine crops with purported resistance to clubroot were evaluated for disease incidence and severity in field and greenhouse studies. The crops evaluated included broccoli (Brassica oleracea var. italica), cauliflower (B. oleracea var. botrytis), brussels sprouts (B. oleracea var. gemmifera), cabbage (B. oleracea var. capitata), napa cabbage (Brassica rapa var. pekinensis), pak choi (B. rapa var. chinensis), kohlrabi (B. oleracea var. gongylodes), turnip (B. rapa var. rapa), and rutabaga (Brassica napus var. napobrassica). ECD host reaction showed similar virulence among clubroot collections, and all field isolates had the same ECD pathotype designation, 16/02/30. Compared with a crop-specific susceptible control, 17 of 21 cultivars had some resistance to clubroot, and of those, 15 were highly resistant (≤15% incidence with low disease severity). This research demonstrated that western Oregon farmers have several commercially available cultivars with resistance to the dominant pathotyope in the region. However, each farmer must evaluate the suitability of these cultivars to meet consumer and industry requirements.


2010 ◽  
Vol 101 (1) ◽  
pp. 89-97 ◽  
Author(s):  
R.S. Mann ◽  
R.L. Rouseff ◽  
J.M. Smoot ◽  
W.S. Castle ◽  
L.L. Stelinski

AbstractThe Asian citrus psyllid, Diaphorina citri Kuwayama, vectors Candidatus Liberibacter asiaticus (Las) and Candidatus Liberibacter americanus (Lam), the presumed causal agents of huanglongbing. D. citri generally rely on olfaction and vision for detection of host cues. Plant volatiles from Allium spp. (Alliaceae) are known to repel several arthropod species. We examined the effect of garlic chive (A. tuberosum Rottl.) and wild onion (A. canadense L.) volatiles on D. citri behaviour in a two-port divided T-olfactometer. Citrus leaf volatiles attracted significantly more D. citri adults than clean air. Volatiles from crushed garlic chive leaves, garlic chive essential oil, garlic chive plants, wild onion plants and crushed wild onion leaves all repelled D. citri adults when compared with clean air, with the first two being significantly more repellent than the others. However, when tested with citrus volatiles, only crushed garlic chive leaves and garlic chive essential oil were repellent, and crushed wild onions leaves were not.Analysis of the headspace components of crushed garlic chive leaves and garlic chive essential oil by gas chromatography-mass spectrometry revealed that monosulfides, disulfides and trisulfides were the primary sulfur volatiles present. In general, trisulfides (dimethyl trisulfide) inhibited the response of D. citri to citrus volatiles more than disulfides (dimethyl disulfide, allyl methyl disulfide, allyl disulfide). Monosulfides did not affect the behaviour of D. citri adults. A blend of dimethyl trisulfide and dimethyl disulfide in 1:1 ratio showed an additive effect on inhibition of D. citri response to citrus volatiles. The plant volatiles from Allium spp. did not affect the behaviour of the D. citri ecto-parasitoid Tamarixia radiata (Waterston). Thus, Allium spp. or the tri- and di-sulphides could be integrated into management programmes for D. citri without affecting natural enemies.


Sign in / Sign up

Export Citation Format

Share Document