scholarly journals Enhancement of Snap Bean Emergence by Gliocladium virens

HortScience ◽  
1996 ◽  
Vol 31 (6) ◽  
pp. 984-985 ◽  
Author(s):  
V.L. Smith

Emergence of snap beans (Phaseolus vulgaris L.) in field soil in 1993–95 was enhanced by the biocontrol agent Gliocladium virens J.H. Miller, J.E. Giddens, & A.A. Foster. The fungus was applied to each seed at planting as a wheat bran alginate pellet formulation in 1993–95. Preemergence and postemergence damping-off were reduced in plots treated with G. virens. Nodulation on the roots of treated plants was numerically increased in 1993 and 1994 compared to nontreated plots. Efficacy of G. virens was reduced in 1995, probably due to high ambient temperatures at the time of planting. In plots with reduced stand, leaf area was increased and yield on a per-plant basis was larger than in plots with a better stand. Total yield also was increased in plots with fewer plants, except in 1994. Fungi isolated from failed seedlings included Fusarium spp., Pythium spp., and Rhizoctonia solani Kühn.

HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 92-94 ◽  
Author(s):  
V.L. Smith

Emergence of snap beans (Phaseolus vulgaris L.) in field soil in 1995 to 1997 was reduced by the addition of dried, ground canola [Brassica napus L. ssp. oleifera (Metzg.) Sinsk. f. biennis] leaves and petioles to the furrow at planting. Soil amendment with the tissue increased the number of nodules on bean roots in all years. In plots with reduced stand, leaf area was increased and yield on a per-plant basis was larger than in plots with a better stand. Total yield was increased in plots with fewer plants only in 1995. Frequency of isolation of fungi that cause damping-off was not affected by the addition of canola at planting. When used as a seed treatment and incorporated at planting, canola residues were detrimental to emergence of snap bean.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1446-1453 ◽  
Author(s):  
J. D. Olson ◽  
J. P. Damicone ◽  
B. A. Kahn

Cottony leak is an important disease of snap bean in Oklahoma and nearby states. Oomycete pathogens isolated from diseased pods collected from commercial fields and research plots consisted of both Pythium spp. (n = 131) and Phytophthora spp. (n = 46). Isolates were identified to species by morphological characteristics and by sequencing a portion of the internal transcribed spacer region of representative isolates. The most common Pythium spp. were Pythium ultimum var. ultimum; Pythium ‘group HS’, a self-sterile form of P. ultimum that produces hyphal swellings in lieu of sporangia (n = 74); and P. aphanidermatum (n = 50). Phytophthora spp. included Phytophthora drechsleri (n = 41) and P. nicotianae (n = 5). Nearly all of the isolates (95%) and all species were pathogenic on detached pods but Pythium ultimum var. ultimum and Pythium ‘group HS’ were most aggressive. Phytophthora drechsleri was most aggressive on seedlings, causing preemergence damping off and seed rot. Pythium ultimum var. ultimum, Pythium ‘group HS’, and P. aphanidermatum were intermediate in virulence to seedlings, causing root rot, stunting, and limited postemergence damping off. Phytophthora nicotianae and Pythium diclinum (n = 4) were not pathogenic on seedlings. Most (87%) isolates were sensitive to metalaxyl-M (concentration that caused a 50% reduction in mycelial growth [EC50] < 1 μg/ml) and the rest were intermediate in sensitivity (EC50 > 1 to < 100 μg/ml). Phytophthora drechsleri was the most sensitive species (EC50 = 0.06 μg/ml) compared with Pythium aphanidermatum, which was least sensitive (EC50 = 1.3 μg/ml). Cottony leak is a disease complex caused by several oomycete species that should include Phytophthora drechsleri, a newly reported pathogen of snap bean in the United States.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
Shaban R. M. Sayed ◽  
Shaimaa A. M. Abdelmohsen ◽  
Hani M. A. Abdelzaher ◽  
Mohammed A. Elnaghy ◽  
Ashraf A. Mostafa ◽  
...  

The role of Pythium oligandrum as a biocontrol agent against Pythium aphanidermatum was investigated to avoid the harmful impacts of fungicides. Three isolates of P. oligandrum (MS15, MS19, and MS31) were assessed facing the plant pathogenic P. aphanidermatum the causal agent of Glycine max damping-off. The tested Pythium species were recognized according to their cultural and microscopic characterizations. The identification was confirmed through sequencing of rDNA-ITS regions including the 5.8 S rDNA. The biocontrol agent, P. oligandrum, isolates decreased the mycelial growth of the pathogenic P. aphanidermatum with 71.3%, 67.1%, and 68.7% through mycoparasitism on CMA plates. While the half-strength millipore sterilized filtrates of P. oligandrum isolates degrade the pathogenic mycelial linear growth by 34.1%, 32.5%, and 31.7%, and reduce the mycelial dry weight of the pathogenic P. aphanidermatum by 40.1%, 37.4%, and 36.8%, respectively. Scanning electron microscopy (SEM) of the most effective antagonistic P. oligandrum isolate (MS15) interaction showed coiling, haustorial parts of P. oligandrum to P. aphanidermatum hyphae. Furthermore, P. oligandrum isolates were proven to enhance the germination of Glycine max seedling to 93.3% in damping-off infection using agar pots and promote germination of up to 80% during soil pot assay. On the other hand, P. oligandrum isolates increase the shoot, root lengths, and the number of lateral roots.


2021 ◽  
Vol 7 (3) ◽  
pp. 167
Author(s):  
Gaber Abo-Zaid ◽  
Ahmed Abdelkhalek ◽  
Saleh Matar ◽  
Mai Darwish ◽  
Muhammad Abdel-Gayed

Of ten actinobacterial isolates, Streptomyces cellulosae Actino 48 exhibited the strongest suppression of Sclerotium rolfsii mycelium growth and the highest chitinase enzyme production (49.2 U L−1 min−1). The interaction between Actino 48 and S. rolfsii was studied by scanning electron microscope (SEM), which revealed many abnormalities, malformations, and injuries of the hypha, with large loss of S. rolfsii mycelia density and mass. Three talc-based formulations with culture broth, cell-free supernatant, and cell pellet suspension of chitinase-producing Actino 48 were characterized using SEM, Fourier transform infrared spectroscopy (FTIR), and a particle size analyzer. All formulations were evaluated as biocontrol agents for reducing damping-off, root rot, and pods rot diseases of peanut caused by S. rolfsii under greenhouse and open-field conditions. The talc-based culture broth formulation was the most effective soil treatment, which decreased the percentage of peanut diseases under greenhouse and open-field conditions during two successive seasons. The culture broth formulation showed the highest increase in the dry weight of peanut shoots, root systems, and yielded pods. The transcriptional levels of three defense-related genes (PR-1, PR-3, and POD) were elevated in the culture broth formulation treatment compared with other formulations. Subsequently, the bio-friendly talc-based culture broth formulation of chitinase-producing Actino 48 could potentially be used as a biocontrol agent for controlling peanut soil-borne diseases caused by S. rolfsii.


2005 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Helyes ◽  
Z. Pék ◽  
Gy. Varga ◽  
J. Dimény

The present paper evaluates the result of irrigation experiments carried out on snap beans sown in spring and summer and grown with and without irrigation. The experiments were run over the course of 12 years. In the average of 12 years, the yield was 2.8t ha-I for spring sown and 1.9 t ha-I in summer-sown plants without irrigation. The lowest level of profitable production, the 5.5t ha-I was reached twice in the case of spring sowing and only once in the case of summer sowing. Profitable yield production can be ensured only with regular irrigation and thus the yield may be increased by 4-5 times. In four of the twelve years we determined the canopy surface temperature of snap bean stands with and without irrigation. A Raynger II infrared remote thermometer determined the canopy surface temperature every day at 13.00 hours. The canopy temperature can well characterize the water supply of plant stands. This parameter may be used for describing the degree of drought and the water turnover of plant stands with different water supply. The positive values of foliage-air temperature differences (SDD) numerically express the degree of drought and the water supply of the crops. The results indicated that a 1 °C higher SDD value may cause 90-130 kg/ha yield loss.


2020 ◽  
pp. 2003-2014
Author(s):  
Silvia Sanielle Costa de Oliveira ◽  
Eduardo Santana Bueno ◽  
Daline Benites Bottega ◽  
Vanessa de Fátima Grah Ponciano ◽  
Sihélio Júlio Silva Cruz

Research on snap bean seed production is essential for this crop to compete against other species that have better production technologies. This study aimed to select a physiological quality evaluation test for snap beans to improve progeny selection strategies. The experiment was conducted in the Seed Analysis Laboratory at the Federal Institute of Goiano, campus Iporá-GO. Seed from thirteen progenies were evaluated for physiological quality from a breeding program conducted by the genetic breeding department of the State University of Goiás, campus Ipameri. Seeds were evaluated for moisture content, thousand-seed weight, biometry (length, width, and thickness), germination, seedling vigor classification, length and seedling dry mass, emergence in the field, and emergence speed index of seedlings in the field. The genetic variability in the evaluated characteristics indicated that genetic breeding can contribute to a better performance in snap bean seed physiological quality. The germination test, vigor classification, emergence, and emergence speed index of seedlings can be used to design strategies for snap bean population selection that produces more productive seeds.


1983 ◽  
Vol 29 (3) ◽  
pp. 321-324 ◽  
Author(s):  
Charles R. Howell ◽  
Robert D. Stipanovic

A compound with antibiotic activity toward Pythium ultimum was isolated from potato dextrose broth shake cultures of Gliocladium virens, a common soil mycoparasite known to inhibit but not parasitize P. ultimum. The mass spectrum and an X-ray crystallograph of the purified antibiotic indicated that it was a new diketopiperazine, and we have given it the trivial name gliovirin. Gliovirin is highly toxic to P. ultimum but is inactive against other fungi associated with cotton seedling disease. The antibiotic does not persist in nonsterile soil where it is apparently inactivated by the soil microflora.An ultraviolet light induced mutant of G. virens deficient for gliovirin production was overgrown by P. ultimum in culture and did not protect cotton seedlings from damping-off in P. ultimum infested soil. A mutant with enhanced gliovirin production was more inhibitory to P. ultimum in culture than the parent isolate and showed similar efficacy as a seedling disease suppressant, even though its growth rate was reduced when compared to the parent isolate. These results indicate that gliovirin may be important to the antagonist–pathogen interaction.


1987 ◽  
Vol 1 (1) ◽  
pp. 18-21 ◽  
Author(s):  
Henry P. Wilson ◽  
Thomas E. Hines

Field studies were conducted for 3 yr to determine the foliar activity of acifluorfen {5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid} for control of common lambsquarters (Chenopodium albumL. # CHEAL) in snap beans (Phaseolus vulgarisL. ‘Provider’ in 1983 and 1985 and ‘Green Crop’ in 1984). Control of 1 to 7 cm tall common lambsquarters varied between 75 and 100% with 0.28 kg ai/ha acifluorfen and frequently increased linearly with increases in acifluorfen rates to 0.84 kg/ha. Snap bean injury occurred each year and in 1985 was influenced by acifluorfen rate, stage of snap bean growth, and surfactant. Snap bean yields in 1983 were reduced linearly with increases in acifluorfen rates and in 1985 were reduced more from applications at the 1- to 2-trifoliolate leaf stage than at the 4- to 8-trifoliolate leaf stage. In the greenhouse, reductions in snap bean height from acifluorfen were related to application timing, surfactant and cultivar. Fresh weight reduction of snap beans was highest with the cultivar ‘Green Crop’ but was increased to both cultivars by early application timing and the addition of surfactant to the spray mix.


Sign in / Sign up

Export Citation Format

Share Document