scholarly journals 014 Effects of Preemergence Herbicides on Weeds and Eighteen Containerized Crops

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 390C-390
Author(s):  
Robert H. Stamps ◽  
Daniel W. McColley

Five preemergence herbicides (prodiamine 0.5 G, prodiamine 65 WDG, dithiopyr 0.27 G, thiazopyr 2.5 G, and oxyfluorfen + pendimethalin 3 G) were evaluated for weed control and crop safety on 18 plants (Acer rubrum, Agapanthus africanus, Asparagus densiflorus, Camellia sasanqua, × Cupressocyparis leylandii, Cycas revoluta, Galphimia gracillis, Gelsemium sempervirens, Illicium parviflorum, Lantana camara, Loropetalum chinense, Myrtis communis, Ophiopogon jaburan, Plumbago, Quercus virginiana, Rhododendron, Viburnum suspensum, and Zamia floridana. Herbicides were applied at 1.7 kg a.i./ha, except for oxyfluorfern + pendimethalin, which was applied at 3.4 kg a.i./ha. Treatments were applied twice at 4-month intervals. Untreated and weed-free controls were used to determine herbicide effects on weeds and crops, respectively. All herbicide treatments reduced weed growth (dry-weight basis) and weeding times. Major weeds were dogfennel [Eupatorium capillifolium (Lam.) Small], southern crabgrass [Digitaria ciliaris (Retz.) Koeler], yellow woodsorrel (Oxalis stricta L.), tasselflower (Emilia spp.), and hairy crabweed [Fatoua villosa (Thumb.) Nakai]. Based on weed dry weights, overall weed control for the first 4 months was higher for diazopyr, thiazopyr, and prodiamine G than for the combination treatment. At 8 months, weed growth was similar for all herbicide treatments. The combination treatment was acutely phytotoxicity to more crops than the other treatments; however, phytotoxicity varied with crop, active ingredient, and formulation.

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 820D-820
Author(s):  
Robert H. Stamps

Six preemergence herbicides were applied twice a year at 1x and 2x rates for 2 years to leatherleaf fern [Rumohra adiantiformis (Forst.) Ching] starting from the time of rhizome planting. Predominant weeds present were Cardimine hirsuta, Erechrites hieracifolia, Oxalis stricta, and Phyllanthus tenellus. All herbicides, except pendimethalin and oxadiazon at the 1x rates, reduced weed biomass by 60% to 99% compared to the unweeded control during the fern bed establishment phase (year 1). During that period, hand-weeding times were reduced (51% to 95%) by prodiamine and dithiopyr at both rates, and oxadiazon and pendimethalin at 2x rates. During year 2, herbicides were of greatly reduced benefit due to reduced weed growth caused by the increasingly competitive fern. After 2 years, only 2x dithiopyr-treated plots had reduced yields compared to the hand-weeded controls. Herbicide treatments had no detrimental effects on frond postharvest longevity. In fact, fronds harvested from the 1x isoxaben-treated plots exhibited increased vase life compared to the controls.


HortScience ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 554B-554a
Author(s):  
Edward Bush ◽  
Ann L. Gray ◽  
Virginia Thaxton ◽  
Allen Owings

Previous research has shown the effectiveness of prodiamine (FactorÆ)as a preemergent herbicide. The objective of this experiment was to evaluate the efficacy and phytotoxicity of prodiamine applied to several woody ornamental and weed species. Phytotoxicity effects were evaluated on eight ornamental species: azalea (Rhododendron indicum `Mrs. G.G. Gerbing'), dwarf yaupon (Ilex vomitoria `Nana'), dwarf mondograss (Ophiopogon japonicus `Nana'), ixora (Ixora coccinea), lantana (Lantana camara `New Gold'), Southern live oak (Quercus virginiana), weeping fig (Ficus benjamina), and daylily (Hemerocallis fulva). Preemergent herbicide treatments (control-nontreated, 2 lbs aia Factor®, and 4 lbs aia Factor®) were applied to ornamentals twice during the experiment at twelve week intervals. There was a reduction in top dry weight for azalea and dwarf mondograss for both 2 and 4 lbs aia treatments. No significant growth reductions were measured for daylily, dwarf yaupon, ixora, lantana, live oak, and weeping fig. The efficacy experiment consisted of four weed species: barnyardgrass (Echinochloa crusgali), crabgrass (Digitaria sanguinalis), coffeeweed (Sesbania exaltata), and pigweed (Amaranthus retroflexus) and five preemergence herbicide treatments (control-nontreated, control-Rout® at 100 lbs/A, Factor® 1 lb aia, Factor® 2 lbs aia, and a tank mixture of Factor® 1 lb aia plus Gallery® 1 lb aia) applied to bark-filled containers. Twenty-five weed seeds of each species were broadcast over each container following herbicide applications. The high rate of Factor®, Rout®, and the combination of Factor®+Gallery® significantly reduced weed dry weight compared to the control. All preemergence herbicides significantly reduced weed counts and height in a similar manner.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 567-572 ◽  
Author(s):  
Erick G. Begitschke ◽  
James D. McCurdy ◽  
Te-Ming Tseng ◽  
T. Casey Barickman ◽  
Barry R. Stewart ◽  
...  

Preemergence herbicides generally have a negative effect on hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] establishment. However, little is known about the effect they have on root architecture and development. Research was conducted to determine the effects of commonly used preemergence herbicides on ‘Latitude 36’ hybrid bermudagrass root architecture and establishment. The experiment was conducted in a climate-controlled greenhouse maintained at 26 °C day/night temperature at Mississippi State University in Starkville, MS, from Apr. 2016 to June 2016 and repeated from July 2016 to Sept. 2016. Hybrid bermudagrass plugs (31.6 cm2) were planted in 126-cm2 pots (1120 cm3) and preemergence herbicide treatments were applied 1 d after planting at the recommended labeled rate for each herbicide. Preemergence herbicide treatments included atrazine, atrazine + S-metolachlor, dithiopyr, flumioxazin, indaziflam, liquid and granular applied oxadiazon, S-metolachlor, pendimethalin, prodiamine, and simazine. Treatments were arranged in a completely randomized design with four replications. Plugs treated with indaziflam and liquid applied oxadiazon failed to achieve 50% hybrid bermudagrass cover by the end of the experiment. Of the remaining herbicide treatments, all herbicides other than granular applied oxadiazon and atrazine increased the number of days required to reach 50% cover (Days50). In addition, all herbicide treatments reduced root mass when harvested 6 weeks after treatment (WAT) relative to the nontreated. By 10 WAT, all treatments reduced root mass in run 1, but during run 2, only prodiamine, pendimethalin, simazine, atrazine + S-metolachlor, liquid applied oxadiazon, and indaziflam reduced dry root mass compared with the nontreated. At 4 WAT, all treatments other than simazine and granular applied oxadiazon reduced root length when compared with the nontreated. By 10 WAT, only dithiopyr, S-metolachlor alone, and indaziflam reduced root length when compared with the nontreated. No differences were detected in the total amounts of nonstarch nonstructural carbohydrates (TNSC) within the roots in either run of the experiment. Results suggest that indaziflam, dithiopyr, and S-metolachlor are not safe on newly established hybrid bermudagrass and should be avoided during establishment. For all other treatments, hybrid bermudagrass roots were able to recover from initial herbicidal injury by 10 WAT; however, future research should evaluate tensile strength of treated sod.


2005 ◽  
Vol 23 (4) ◽  
pp. 204-211
Author(s):  
Donna C. Fare ◽  
Patricia Knight ◽  
Charles H. Gilliam ◽  
James Altland

Abstract Four experiments were conducted to investigate herbicides currently labeled for field and/or container production for use in pot-in-pot production. Southern magnolia (Magnolia grandiflora L.), red maple (Acer rubrum Spach. ‘Autumn Flame’ and ‘Franksred’), ornamental pear (Pyrus calleryana Decne. ‘Bradford’ and ‘Cleveland Select’), river birch (Betula nigra L.), green ash (Fraxinus pennsylvanica Marsh. and F. pennsylvanica Marsh.‘Marshall's Seedless’), and zelkova (Zelkova serrata Spach ‘Village Green’) were evaluated for herbicide tolerance. Barricade 65WG, Surflan 4AS, and Pendulum 60WDG, used alone or in combination with Princep and Gallery 75 DF, had no adverse effect on tree shoot growth or trunk caliper growth when applied as a directed band application. Weed control varied depending upon local site conditions, herbicide rate and weed species.


1989 ◽  
Vol 3 (4) ◽  
pp. 621-626 ◽  
Author(s):  
David L. Regehr ◽  
Keith A. Janssen

Research in Kansas from 1983 to 1986 evaluated early preplant (30 to 45 days) and late preplant (10 to 14 days) herbicide treatments for weed control before ridge-till planting in a soybean and sorghum rotation. Control of fall panicum and common lambsquarters at planting time averaged at least 95% for all early preplant and 92% for late preplant treatments. Where no preplant treatment was used, heavy weed growth in spring delayed soil dry-down, which resulted in poor ridge-till planting conditions and reduced plant stands, and ultimately reduced sorghum grain yields by 24% and soybean yields by 12%. Horsenettle population declined significantly, and honeyvine milkweed population increased. Smooth groundcherry populations fluctuated from year to year with no overall change.


2007 ◽  
Vol 25 (2) ◽  
pp. 83-88
Author(s):  
Jonathon I. Watkinson ◽  
Wallace G. Pill

Abstract The efficacy of non-chemical weed control during plug establishment of a wildflower meadow on glyphosate-killed turf grass was studied. Each field sub-block (not-tilled or twice-tilled to 15 cm (6 in) depth) on killed grass received the following sub-plot soil cover treatments: no cover, woven polypropylene weed fabric, double shredded hardwood/softwood mulch at 7.5 cm (3 in) depth, or fabric covered by mulch. Each 3 × 3 m (10 × 10 ft) subplot was planted in late spring with 100 plugs on 30 cm (1 ft) centers at the following frequency: Baptisia australis (10), Coreopsis lanceolata (20), Solidago speciosa (10), Panicum virgatum (20), and Schizachyrium scoparium (40). Tillage of the killed grass not only failed to benefit wildflower establishment, but increased weed shoot biomass during the second growing season. Greater wildflower shoot dry weights at 120 days after transplanting with mulch (with or without underlying fabric) than with fabric alone or no cover was associated with greater soil moisture, reduced soil temperature range, and reduced weed cover and shoot biomass. Weed fabric compared to no cover failed to affect wildflower shoot dry weights during either growing season but decreased weed growth during the second growing season. Fabric under mulch compared to mulch alone generally failed to affect wildflower growth and had no effect on weed growth during either growing season. During the second growing season, weed shoot dry weights remained low in mulched plots and remained high in non-mulched plots. Regardless of cover, wildflower shoots underwent considerable dry weight gain, while weed shoot dry weights generally remained constant or declined during the second growing season compared to the first. We conclude that, at least under our experimental conditions, applying a 7.5 cm (3 in) layer of wood chip mulch directly over glyphosate-killed turf was the most efficaceous and cost effective method of establishing a wildflower meadow using wildflower plugs. Neither placing weed fabric under the mulch nor twice-tilling the killed turf before mulch application benefitted wildflower shoot growth.


2021 ◽  
Vol 10 (1) ◽  
pp. 343-355
Author(s):  
Dan David. Quee ◽  
Philip Jimia. Kamanda ◽  
Musa Decius. Saffa ◽  
Johnny Ernest. Norman

Field trials were conducted in savannah woodland (Njala) and rainforest (Serabu) agroclimatic regions of Sierra Leone during 2016 second cropping season to assess different preemergence herbicides techniques that is efficient, cost effective and environmentally safe in cowpea production. The experiment consisted of 20 treatments which included 2 cowpea genotypes (slipea 4 and slipea 5) and 10 different weed control techniques viz: butachlor 50% emulsifiable concentrate (EC), double force®, power force® applied as preemergence herbicides at 2, 4 and 6 L ha-1, respectively and weedy check. The treatments were laid out in a strip-plot design arranged in a factorial system with three replications. The results of this study revealed that the application of power force® at 6 L ha-1 recorded the highest phytotoxic effect, lowest weed dry weight, number of pods per plant and grain yield, highest total variable cost, lowest gross and net returns. Furthermore, butachlor 50% EC at 2 L ha-1 closely followed by double force® at 6 L ha-1 resulted in maximum grain yield, gross and net returns compared to the rest of the other weed control techniques. Thus, it is concluded that butachlor 50% EC at 2 L ha-1 was more economical, profitable and beneficial than other control treatments in the production of cowpea genotypes in the savannah woodland and rainforest agroclimatic regions of Sierra Leone. Conclusively, the relationship between phytotoxicity and grain yield indicates that the higher the grain yield the lower the phytotoxic effects of the chemicals.


HortScience ◽  
1993 ◽  
Vol 28 (12) ◽  
pp. 1171-1172 ◽  
Author(s):  
Nancy E. Roe ◽  
Peter J. Stoffella ◽  
Herbert H. Bryan

A mulch of municipal solid waste compost at 224 t·ha was compared with glyphosate sprays and a nontreated check for weed control in vegetable crop bed alleys during Spring and Summer 1992. In both experiments, there was a significantly lower percentage of weed coverage in the compost mulch and herbicide spray plots than in the control plots. Weed control in the compost and herbicide treatments was similar. In the spring experiment, tractor tire traffic through the alleys reduced weed growth in all plots by 62 % and 44% at 16 and 73 days after treatment initiation, respectively. These results suggest that municipal solid waste compost may have potential as a viable mulch for weed control in vegetable crop alleys. Chemical name used: isopropylamine salt of N -(phosphonomethyl) glycine (glyphosate).


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 470E-470
Author(s):  
Jennifer A. Johnson ◽  
Larry Kuhns ◽  
Tracey Harpster

Community waste management programs that include the composting of sewage sludge and yard wastes have become a necessity. Using these composts provides many benefits; however, increased levels of organic matter may reduce the effectiveness of preemergence herbicides. Determining how herbicide application rates may need to be adjusted when composted waste is incorporated into the soil may permit the use of these amendments without any decrease in weed control. This experiment examined the effect of two types of compost (composted sewage sludge and composted yard waste) on the weed control provided by four preemergence herbicides. The soil was a Hagerstown silt loam amended with 10%, 20%, or 30% compost by volume. Each mix was placed in half-gallon cardboard milk cartons. The cartons were seeded at 1/2 and 1/4 inches with a mixture of broadleaved weeds and grasses. Each soil mix was treated with simazine, oxyfluorfen, oryzalin, and metolachlor at two rates. Control was evaluated both visually by number and by the dry weight of the harvested weeds. Preliminary results indicate composted sewage sludge causes a greater reduction in herbicide efficacy than composted yard waste. Oryzalin and metolachlor were affected less than oxyfluorfen or simazine. The experiment was repeated using lower application rates. In one replication the soil mixes from the previous experiment were used. The second replication used a Hagerstown silty clay loam soil with fresh compost. The results of this experiment will provide preliminary information for future field studies designed to determine if the application rates of preemergence herbicides need to be adjusted when fields are amended with composted organic matter.


2005 ◽  
Vol 15 (2) ◽  
pp. 238-243 ◽  
Author(s):  
S. Alan Walters ◽  
Scott A. Nolte ◽  
Bryan G. Young

The influence of `Elbon', `Maton', and `Wheeler' winter rye (Secale cereale) with or without herbicide treatments on weed control in no-tillage (NT) zucchini squash (Cucurbita pepo) was determined. `Elbon' or `Maton' produced higher residue biomass, greater soil coverage, and higher weed control compared with `Wheeler'. Although winter rye alone did not provide sufficient weed control (generally <70%), it provided substantially greater redroot pigweed (Amaranthus retroflexus) and smooth crabgrass (Digitaria ischaemum) control (regardless of cultivar used) compared with no winter rye at both 28 and 56 days after transplanting (DAT). No effect (P > 0.05) of winter rye cultivar on early or total squash yield was detected. Although applying clomazone + ethalfluralin to winter rye residues improved redroot pigweed control compared with no herbicide, the level of control was generally not adequate (<85% control) by 56 DAT. Treatments that included halosulfuron provided greater control of redroot pigweed than clomazone + ethalfluralin, and redroot pigweed control from halosulfuron treatments was similar to the weed-free control. However, regardless of year or cover crop, any treatment with halosulfuron caused unacceptable injury to zucchini squash plants which lead to reduced squash yield (primarily early yields). Insignificant amounts of squash injury (<10% due to stunting) resulted from clomazone + ethalfluralin in no-tillage plots during either year. Treatments with clomazone + ethalfluralin had early and total yields that were similar to those of the weed-free control, although this herbicide combination provided less weed control compared with the weed-free control.


Sign in / Sign up

Export Citation Format

Share Document