scholarly journals Chemical Factors Enhancing Papaya Root Growth in a Tropical Volcanic Acid Subsoil

HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1037-1038 ◽  
Author(s):  
Thomas E. Marler ◽  
Ruben dela Cruz

Subsoil from an acid soil series was amended with CaSO4, MgO, or Ca(OH)2 to identify chemical factors that may enhance papaya (Carica papaya L.) root growth in these soils. Root length of `Red Lady' and `Waimanalo' seedlings at two stages of development was increased by the addition of each of the materials. The increase in root length was similar for CaSO4 or MgO amendments, and was greatest for Ca(OH)2 amendment. These amendments increased dry weight of new roots for `Red Lady' and increased root length per unit dry weight in one experiment for `Waimanalo'. The results indicate that both Ca deficiency and Al toxicity may be responsible for limiting papaya root growth in the subsoils of the acid soils of Guam. Correcting these chemical factors should improve rooting depth, thereby increasing the volume of soil from which resources are accessible and lessening the susceptibility to toppling during tropical cyclones.

1981 ◽  
Vol 32 (4) ◽  
pp. 565 ◽  
Author(s):  
AR Harradine ◽  
RDB Whalley

Establishing plants of Aristida ramosa R.Br. and Danthonia linkii Kunth grown in root observation tubes differed markedly in their root growth and root morphology. Radicle extension of A. ramosa proceeded far more rapidly than that of D. linkii, and root branching occurred earlier and to a much greater extent in D. linkii. From 2 months after germination onwards, the maximum rooting depth of A. vamosa was greater than that of D. linkii, although total root dry weights for the two species were not significantly different. At 25 weeks from germination, 48 % of the root dry weight of D. linkii was present in the 0-10 cm level of the soil profile, while the corresponding figure for A. ramosa was 33 %. Root weight and rooting depth of both species were severely reduced by foliage clipping at weekly or monthly intervals, with roots being more sensitive to clipping than shoots. Clipping led to a concentration of root mass in the 0-10 cm level. The rapidly establishing seedling root system of A. vamosa would give it a competitive advantage over D. linkii in the environment of the north-western slopes of New South Wales. The results of the clipping trial suggest that grazing management may be manipulated to alter the relative abundance of A. ramosa and D. linkii in native pastures.


1990 ◽  
Vol 17 (2) ◽  
pp. 189 ◽  
Author(s):  
JW White ◽  
JA Castillo ◽  
J Ehleringer

Recent theoretical and empirical studies have indicated that isotopic discrimination against 13C (Δ) during photosynthesis in C3 plants reflects variation in intercellular CO2 concentration (ci). Under water deficit, cultivar differences in Δ may indicate differences in leaf gas exchange characteristics. Cultivar differences in Δ may also result indirectly from genetic variation in root characteristics affecting the level of water stress experienced by the canopy. Differences in root growth affecting the degree of dehydration postponement could prolong gas exchange activity and the maintenance of relatively high ci and Δ. To evaluate relations between root growth, productivity and Δ in common bean (Phaseolus vulgaris L.), Δ and crop growth parameters, including biomass production, grain yield and root length density, were determined for ten bean genotypes grown under rainfed conditions at two sites in Colombia which differed primarily in soil fertility and effective rooting depth. The 10 genotypes were also grown under irrigation at the more fertile site. Under rainfed conditions, root length density was positively correlated with Δ in the fertile Mollisol at Palmira, and was also positively correlated with Δ in the infertile Oxisol at Quilichao if one possibly abberent genotype was excluded. At Palmira, reduced crop growth and seed yield were associated with low Δ values. At Quilichao, intermediate Δ values were associated with the greatest growth and yield. Under irrigation at Palmira there was no association between growth or yield and Δ.


2020 ◽  
Vol 8 (2) ◽  
pp. 2653-2660
Author(s):  
M Mardhiana ◽  
Dwi Apriyani ◽  
Muh Adiwena ◽  
Ankardiansyah Pandu Pradana

On acid soils, maize growth cannot be optimal because of the high content of Al, Fe, Mg, and Zn, which has the potential to poison plants. Several nutrients such as P, Cu, and S are also available in small quantities for plants, thus inhibiting growth. This study aimed to determine the effectiveness of oil palm empty fruit bunches compost and rice husk charcoal in increasing the growth and yield of maize on red-yellow podzolic acid soils. Bonanza F1 varieties were planted and treated with (T1) 5 t ha-1 of oil palm empty fruit bunches compost; (T2) 10 t ha-1 of oil palm empty fruit bunches compost; (T3) 5 t ha-1 rice husk charcoal; (T4) 10 t ha-1 rice husk charcoal; and (T5) 5 t ha-1 of oil palm empty fruit bunches compost + 5 t ha-1 of rice husk charcoal, and control plants were not given any treatment. The results showed that all treatments had a better and significantly different effect than the control plants. The application of oil palm empty fruit bunches compost and rice husk charcoal could boost plants height (149.75% - 289.88%), stems diameter (124.10% - 204.62%), number of leaves (131.01% - 223.26%), plants fresh weight (204.14% - 342.25 %), plants dry weight (136.77% - 165.76%), weight of maize cobs (178.77% - 292.72%), weight of maize cobs without maize husks (158.27% - 233.03%), maize cobs length (112.44% - 147.14%), maize cobs diameter (117.16% - 187.79%), and the weight of 100 maize kernels (110.92% - 201.72%). Among all treatments, the T5 treatment (5 t ha-1 of oil palm empty fruit bunches compost + 5 t ha-1 rice husk charcoal) was the best because it consistently gave the highest yields on all observed variables.


1991 ◽  
Vol 42 (7) ◽  
pp. 1271 ◽  
Author(s):  
GJ Blair ◽  
DC Godwin

Lack of data on root growth and relationships between root parameters and P uptake are major limitations to understanding and modelling P efficiency in crop and forage plants. An experiment was conducted whereby two accessions of white clover (Trifolium repens, Chiswick and Ladino) were grown in pots in a P deficient soil fertilized with a low (P5 [kg ha-1]) or high (P40) P application rate. Plants were harvested at 10, 16, 22, 28, 34 and 40 days after transplanting and tops harvested and roots recovered from the pots. Detailed measures of root members were made at 10, 16 and 22 days and these correlated with P uptake. Dry weight of tops of accessions was the same between the two rates of P until day 28. At 40 days, the tops yield of Ladino was higher than Chiswick at P40. Root dry weight increased with increasing P application rate and time from day 16 onwards. Significant differences in root growth only occurred at the 16 and 34 day harvests at P5. Ladino tended to have a greater mean P uptake over time than did Chiswick at both P levels. P uptake was found to be positively correlated with shoot and root dry weight, root length, root number, root volume and surface area, and negatively correlated with mean root diameter and mean length per root. Root extension rate at low P in Ladino was greater than that in Chiswick, which may explain the greater P uptake by Ladino at low P at later harvests in this experiment. The changes in length, diameter and number of roots in the two accessions examined in this study, with time, in response to P, reflect some form of coordination. Chiswick tended to produce many short roots whilst Ladino fewer long roots. Only small differences in P uptake per unit root length were measured, which suggest that total root length or root extension rate is the primary determinant of total P uptake in these accessions of white clover.


2003 ◽  
Vol 54 (5) ◽  
pp. 445 ◽  
Author(s):  
C. Tang ◽  
M. Nuruzzaman ◽  
Z. Rengel

A soil-based screening method was used to test tolerance of wheat genotypes to acidity. Plants were grown for 6 days in an acid soil with the pH adjusted to 3.9–5.8. The number and length of roots were measured. To validate the method, 12 wheat cultivars of known acidity tolerance and one acid-sensitive barley cultivar were grown on an acid soil in the field with or without amelioration of subsoil acidity. The relative yields of these wheat genotypes on the soil with subsoil acidity ranged from 50 to 89% of yields on soil without subsoil acidity, and were correlated with root growth parameters obtained in the glasshouse. The best correlation was obtained between relative yields in the field (y) and root length per plant (x) at pH 3.9 in the glasshouse (y = –43 + 52*log x, r = 0.95) or root length per plant at pH 3.9 as a percentage of root length at pH 4.8 (y = 1.2 + 46*log x, r = 0.94). Following validation of the glasshouse screening method in the field, 115 wheat genotypes, including cultivars and breeding lines, were screened in the glasshouse. A substantial genotypic variation in acidity tolerance was found, with root length per plant at pH 3.9 ranging from 66 to > 350 mm. Many Western Australian breeding lines displayed better tolerance than existing tolerant wheat cultivars. The screening system can be instrumental in breeding wheat for increased tolerance to acid soils.


2003 ◽  
Vol 46 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Patrícia Minatovicz F. Doblinski ◽  
Maria de Lourdes L. Ferrarese ◽  
Domitila A. Huber ◽  
Carlos Alberto Scapim ◽  
Alessandro de Lucca e Braccini ◽  
...  

The scope of the present study was to investigate how the p-coumaric (p-CA) and p-hydroxybenzoic (p-HD) acids affect the peroxidase (POD, EC 1.11.1.7) activity, the lipid peroxidation (LP) and the root growth of soybean (Glycine max (L.) Merr.). Three-day-old seedlings were cultivated in nutrient solution containing p-CA or p-HD (0.1 to 1 mM) for 48 h. After uptake, both compounds (at 0.5 and 1 mM) decreased root length (RL), fresh weight (FW) and dry weight (DW) while increased soluble POD activity, cell wall (CW)-bound POD activity (with 1 mM p-CA and 0.5 mM p-HD) and LP.


2015 ◽  
Vol 66 (4) ◽  
pp. 249 ◽  
Author(s):  
J. A. Kirkegaard ◽  
J. M. Lilley ◽  
J. R. Hunt ◽  
S. J. Sprague ◽  
N. K. Ytting ◽  
...  

Dual-purpose crops for grazing and grain production can be highly profitable, provided grazing does not cause significant loss of grain yield. In many plants, defoliation causes a transient reduction in the allocation of resources to stem and root growth and remobilisation of soluble resources to re-establish leaf area rapidly. In Australia, the usual autumn and winter period of defoliation for grazed crops, May–July, coincides with a phase of near-linear root depth penetration in ungrazed crops, and the crop recovery period after grazing occurs during stem elongation, when grain number and yield potential are determined. However, few studies have investigated the potential impact of crop defoliation through grazing on root growth of wheat in the field. We investigated the effect of defoliation by grazing or shoot removal on the root growth of wheat crops in four field experiments in south-eastern Australia in which the timing, frequency and intensity of defoliation varied. Despite significant impacts of defoliation on aboveground biomass (50–90% reduction) and grain yield (10–43% reduction) in all experiments, we found little evidence of effects on the rate of root penetration or final rooting depth. A notable exception was observed in one experiment when defoliation commenced very early (four-leaf stage, Zadoks growth stage Z14) in a repeatedly defoliated crop, reducing rooting depth from 1.65 to 1.35 m. The only other measured impact on roots was in an early-sown winter wheat crop grazed by sheep for 3 months (6 June–3 September), in which root length density was reduced by ~50% in surface layers above 1.0 m depth, but there was no impact on maximum root depth or root length density at 1.0–2.0 m depth. Our results suggest that grazing has little impact on the rooting depth of wheat unless it occurs very early and repeatedly, when plants are allocating significant resources to establish the primary roots. However, there may be some reduction in the density of roots in surface layers during recovery after long-term grazing, presumably associated with reduced proliferation of the nodal root system. We conclude that most significant yield penalties due to grazing relate to impacts on the assimilation of aboveground resources, rather than to reduced water or nutrient acquisition by roots.


2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Mohammad Agus Salim ◽  
LULUK SETYANINGSIH ◽  
IMAM WAHYUDI ◽  
SRI WILARSO BUDI

Abstract. Salim MA, Setyaningsih L, Wahyudi I, Budi SW. 2021. Growth of Falcataria moluccana and Albizia chinensis seedling under aluminum exposure. Biodiversitas 22: 3693-3701. Aluminum (Al) is an element found in acid soils and is one of the limiting factors for plant growth. This study aims to examine the growth of Falcataria moluccana (Miq.) Barneby & J.W.Grimes and Albizia chinensis (Osbeck) Merr seedlings under exposure of aluminum. This study used an one-factor completely randomized design (Al concentration) consisting of 5 levels, namely 0, 2, 4, 6, and 8 mM. Each treatment was repeated 3 times and each replication consisted of 3 plant units. The results showed that the Al exposure treatment gave significant differences in the growth of height, root length, dry weight (root, shoot, and total) of F. moluccana and A. chinensis seedlings. The 2 mM Al concentration stimulated the growth of height, root length and dry weight (root, shoot, and total) of A. chinensis seedlings. The tolerance index for F. moluccana and A. chinensis seedlings was highest when the Al 2 mM concentration was 147.55% and 115.32%, respectively. 2 mM Al exposure treatment increased the chlorophyll content a, b, total chlorophyll and carotenoids of F. moluccana and A. chinensis seedlings. Al exposure treatment did not significantly differ from the rate of photosynthesis and MDA content in F. moluccana and A. chinensis seedlings. The Al content in the roots was higher than in the shoots, and the increase in Al concentration increased the Al content in the roots and shoots of F. moluccana and A. chinensis seedlings.


2008 ◽  
Vol 32 (5) ◽  
pp. 2061-2071 ◽  
Author(s):  
Ivo Ribeiro da Silva ◽  
Tarcísio Fernando Côrtes Corrêa ◽  
Roberto Ferreira Novais ◽  
Fabrício de Oliveira Gebrim ◽  
Flancer Novais Nunes ◽  
...  

A large proportion of soybean fields in Brazil are currently cultivated in the Cerrado region, where the area planted with this crop is growing considerably every year. Soybean cultivation in acid soils is also increasing worldwide. Since the levels of toxic aluminum (Al) in these acid soils is usually high it is important to understand how cations can reduce Al rhizotoxicity in soybean. In the present study we evaluated the ameliorative effect of nine divalent cations (Ca, Mg, Mn, Sr, Sn, Cu, Zn, Co and Ba) in solution culture on Al rhizotoxicity in soybean. The growth benefit of Ca and Mg to plants in an acid Inceptisol was also evaluated. In this experiment soil exchangeable Ca:Mg ratios were adjusted to reach 10 and 60 % base saturation, controlled by different amounts of CaCl2 or MgCl2 (at proportions from 100:0 up to 0:100), without altering the soil pH level. The low (10 %) and adequate (60 %) base saturation were used to examine how plant roots respond to Al at distinct (Ca + Mg)/Al ratios, as if they were growing in soils with distinct acidity levels. Negative and positive control treatments consisted of absence (under native soil or undisturbed conditions) or presence of lime (CaCO3) to reach 10 and 60 % base saturation, respectively. It was observed that in the absence of Aluminum, Cu, Zn, Co and Sn were toxic even at a low concentration (25 µmol L-1), while the effect of Mn, Ba, Sr and Mg was positive or absent on soybean root elongation when used in concentrations up to 100 µmol L-1. At a level of 10 µmol L-1 Al, root growth was only reverted to the level of control plants by the Mg treatment. Higher Tin doses led to a small alleviation of Al rhizotoxicity, while the other cations reduced root growth or had no effect. This is an indication that the Mg effect is ion-specific and not associated to an electrostatic protection mechanism only, since all ions were divalent and used at low concentrations. An increased exchangeable Ca:Mg ratio (at constant soil pH) in the acid soil almost doubled the soybean shoot and root dry matter even though treatments did not modify soil pH and exchangeable Al3+. This indicates a more efficient alleviation of Al toxicity by Mg2+ than by Ca2+. The reason for the positive response to Mg2+ was not the supply of a deficient nutrient because CaCO3 increased soybean growth by increasing soil pH without inducing Mg2+ deficiency. Both in hydroponics and acid soil, the reduction in Al toxicity was accompanied by a lower Al accumulation in plant tissue, suggesting a competitive cation absorption and/or exclusion of Al from plant tissue stimulated by an Mg-induced physiological mechanism.


2004 ◽  
Vol 55 (1) ◽  
pp. 13 ◽  
Author(s):  
Sahta Ginting ◽  
Bruce B. Johnson ◽  
Sabine Wilkens

An acid soil from the Sedgwick region of central Victoria was modified to provide a range of aluminium (Al) concentrations in order to test whether incorporation of organic ligands, or plant material, could reduce plant-available (or 'reactive') Al in soils. Al concentrations in the soil were increased by addition of varying amounts of a solution of AlK(SO4)2, chosen after measurement of the adsorption of Al onto the soil. A similar study of citrate adsorption allowed estimation of the amount of citrate required to achieve a 1 : 1 Al : citrate ratio in the soil in order to test the effectiveness of organic ligands in alleviating Al toxicity. Citrate was found to decrease the level of reactive Al in the soil. Pot trials also showed that addition of citrate to Al amended soil caused some improvement in root length and dry weight of soybean plants (Glycine max) compared with the Al amended soil. Addition of oxalate also reduced the level of reactive Al but did not improve root growth. Incorporation of dried leaves from lucerne (Medicago sativa), rhubarb (Rheum rhubarbarum), oxalis (Oxalis pes-caprae), and soybean at application rates equivalent to 5 and 10 t/ha to a soil containing added Al tended to increase root length. The most surprising result was the relatively small effect of high Al concentrations on plant growth, with 2000 μm reactive Al reducing root length by only 50% after 15 days of growth. This is a much smaller reduction in root length than has previously been obtained in hydroponic systems with 500 μm reactive Al after 15 days growth (Ginting et al. 1998) and points to a major difference between plant growth trials in solution culture and soil systems. One possible explanation for this difference is that the roots are in contact with only a small volume of soil solution, and this can be modified by root exudates. Further research is required to test this hypothesis, which will require the development of a method of analysis for Al in soil systems that more accurately reflects reactive Al levels in the root-zone.


Sign in / Sign up

Export Citation Format

Share Document