scholarly journals Optimizing Postharvest Life of Cut `Renaissance Red' Poinsettias

HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1366-1370 ◽  
Author(s):  
John M. Dole ◽  
Paul Fisher ◽  
Geoffrey Njue

Several treatments were investigated for increasing vase life of cut `Renaissance Red' poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch.) stems. A vase life of at least 20.6 days resulted when harvested stems were placed directly into vases with 22 °C deionized water plus 200 mg·L-1 8-HQS (the standard floral solution used) and 0% to 1% sucrose without floral foam. Maturity of stems at harvest, ranging from 0 to 4 weeks after anthesis, had no effect on vase life or days to first abscised leaf. Pretreatments immediately after harvest using floral solution heated to 38 or 100 °C, or 1 or 10-min dips in isopropyl alcohol, had no effect, whereas 24 hours in 10% sucrose shortened vase life by 6.4 days and time to first abscised cyathium by 4.5 days. Stem storage at 10 °C decreased vase life, particularly when stems were stored dry (with only 0.8 days vase life after 3 weeks dry storage). Increasing duration of wet storage in floral solution from 0 to 3 weeks decreased vase life from 21.5 to 14.6 days. Placing cut stems in a vase containing floral foam decreased time to first abscised leaf by 3.7 to 11.6 days compared with no foam. A 1% to 2% sucrose concentration in the vase solution produced the longest postharvest life for stems placed in foam but had little effect on stems not placed in foam. A 4% sucrose concentration decreased vase life compared with lower sucrose concentrations regardless of the presence of foam. Holding stems in the standard floral solution increased vase life and delayed leaf abscission compared with deionized or tap water only, with further improvement when stem bases were recut every three days. Commercial floral pretreatments and holding solutions had no effect on vase life and days to first abscised cyathium but delayed leaf abscission.

1993 ◽  
Vol 33 (5) ◽  
pp. 663 ◽  
Author(s):  
RB Jones ◽  
JK Truett ◽  
M Hill

Optimum postharvest and storage treatments were investigated for cut immature branches of Eucalyptus crenulata Blakely & Beuzev. and Eucalyptus gunnii J. D. Hook. The application of the germicide BCDMH at 10 mg/L of active chlorine, 100 �L Agral-600/L. or 0.25% sucrose to vase solutions significantly enhanced vase life in E. crenulata Longevity in E. gunnii was significantly extended by sucrose (0.25-2% w/v), but not by germicides or Agral. Sucrose pulses (1-10% for 24 11 at 20�C) or exogenous ethylene (50 �L/L for 24 h at 20�C) had no effect on the longevity of either species. Both species produced very low levels of ethylene immediately after harvest and after a 24-h simulation of dry transport at 20�C. Longevity was not significantly altered in either species by 35 days of dry storage at 1�C. or by 7 days of wet storage (branches held in distilled water + 50 mg DICAJL) at 1�C, but declined significantly in both species after 7 days of wet storage at 10�C.


2016 ◽  
Vol 22 (2) ◽  
pp. 166
Author(s):  
Gláucia Moraes Dias ◽  
José Maria Monteiro Sigrist ◽  
Patricia Cia ◽  
Sylvio Luís Honório

Rosa sp. is the leading cut flower commercialized in Brazil and in the world; and to maintain stem quality it should be stored at 1 °C, however, there are still doubts about the storage of roses, especially whether the stems should be cold stored in water before marketing. In order to assess the feasibility of wet and dry storage, rose stems, ‘Avalanche’ were stored for 28 days in both conditions at 1 ± 2 °C / 95% RH. Weekly stems batches were transferred to 25 °C / 70% RH and kept in vessels containing tap water for postharvest assessment. It was observed that the decrease in the quality of the roses was inversely proportional to the storage time in both treatments. Although wet storage can occur for up to 21 days, when you need to store roses for a week or two, cold storage in dry condition is advised since it is more economical and viable for the producer.


HortScience ◽  
2002 ◽  
Vol 37 (6) ◽  
pp. 954-958 ◽  
Author(s):  
Theresa Bosma ◽  
John M. Dole

Various postharvest treatments were evaluated for effect on longevity and quality of cut Campanula medium L. `Champion Blue' and `Champion Pink' stems. Stems stored at 2 °C either wet or dry had no difference in vase life or percent flowers opened; however, flowers stored dry had a slightly greater percentage of senesced flowers at termination. Increasing storage duration from 1 to 3 weeks decreased vase life. Stems pretreated for 4 hours with 38 °C floral solution (deionized water amended to pH 3.5 with citric acid and 200 mg·L-1 8-HQC) or a 1-MCP pulse followed by a 5% sucrose pulse solution produced the longest vase life (10.3 or 10.4 days, respectively). Flowers opening after treatments commenced were paler than those flowers already opened and a 24-hour pretreatment with 5% or 10% sucrose did not prevent this color reduction. Stems had an average vase life of only 3.3 days when placed in floral vase foam but lasted 10.0 days without foam. Optimum sucrose concentration was 1.0% to 2.0% for stems placed in 22 °C floral vase solution without foam and 4% for stems placed in foam. High (110 μmol·m-2·s-1) or low (10 μmol·m-2·s-1) light levels did not affect postharvest parameters, but the most recently opened flowers were paler under low light conditions than under high light conditions. Chemical names used: 8-hydroxyquinoline citrate (8-HQC); 1-methylcyclopropene (1-MCP).


HortScience ◽  
1995 ◽  
Vol 30 (5) ◽  
pp. 1058-1060 ◽  
Author(s):  
Motoaki Doi ◽  
Michael S. Reid

Regardless of their maturity at harvest, the vase life of cut inflorescences of the hybrid Limonium `Fantasia' placed in deionized water was 4 to 5 days. A vase solution containing Physan (a quaternary ammonium disinfectant solution) at 200 μl·liter–1 and 20 g sucrose/liter not only prolonged the longevity of individual florets but also promoted bud opening so that the vase life of cut inflorescences extended to 17 days. Pulse treatment with 100 g sucrose/liter in combination with Physan at 200 μl·liter–1 for 12 hours partially substituted for a continuous supply of sucrose. Including 30 mg gibberellic acid/liter in the vase solution was without benefit.


2017 ◽  
Vol 47 (2) ◽  
Author(s):  
Lucas Cavalcante da Costa ◽  
Fernanda Ferreira de Araújo ◽  
Mirelle Nayana de Sousa Santos ◽  
Paula Cristina Carvalho Lima ◽  
Ariana Mota Pereira ◽  
...  

ABSTRACT: Normally, it is not recommended the conditioning of gladiolus stems in water during storage or transport. Hydration of petals may accelerate flower opening, even at a low temperature, which compromises quality at marketing moment. However, for this species, neither the effect of prolonged dry cold storage nor its behavior when transferred to water at room temperature has been evaluated. The present study aimed to evaluate the vase life and the rehydration capacity of gladiolus flowers ( Gladiolus grandiflora Hort.) after dry storage at low temperature. Flower stems of cultivars Blue Frost, Gold Field, Traderhorn, and Jester were dry-stored at a temperature of 5 ± 1 ºC and relative humidity of 85% for 12, 24, 36, and 48h. Control stems remained always in deionized water. After storage, they were returned to the water at room temperature and evaluated for vase life (adopting the discard criterion when 50% of the basal flowers displayed loss of color and wilting), fresh weight change (%), water uptake rate and transpiration rate, as well as relative water content of the petals (%). In dry cold storage conditions, for up to 36h, the vase life was not affected although incomplete rehydration of the flowers. Rehydration capacity of the stem is linked to the staggered opening of flowers along the inflorescence.


2012 ◽  
Vol 22 (4) ◽  
pp. 463-469 ◽  
Author(s):  
Iftikhar Ahmad ◽  
John M. Dole ◽  
Atyab Amjad ◽  
Sagheer Ahmad

Effects of wet and dry storage methods were compared to improve postharvest performance of specialty cut flower species. While increasing duration of storage reduced vase life, vase life declined less with dry storage for marigold (Tagetes erecta) and rose (Rosa hybrida), but not for zinnia (Zinnia elegans) or lisianthus (Eustoma grandiflorum) over wet storage. Marigold stems had 1.9, 4.6, and 1.5 days longer vase life after 1, 2, or 3 weeks in dry storage, respectively, as compared with storage in water. Zinnia stems did not tolerate either wet or dry storage, while lisianthus stems had a longer vase life when stored in water as compared with dry storage. For rose, dry storage for 2 weeks increased vase life compared with wet storage. Dry stored marigold and lisianthus stems had higher water uptake after being placed in the vase as compared with the stems stored in water, while zinnia and rose had less uptake. Storage method had no effect on leaf relative water content (LRWC) in lisianthus, marigold, and zinnia; however, LRWC decreased with increased storage duration. This necessitates evaluation of storage method and duration effects for each species and cultivar to ensure extended storage life and improve postharvest quality.


2011 ◽  
Vol 35 (4) ◽  
pp. 657-663 ◽  
Author(s):  
Elka Fabiana Aparecida Almeida ◽  
Patrícia Duarte de Oliveira Paiva ◽  
Luiz Carlos de Oliveira Lima ◽  
Franklin Cordeiro Silva ◽  
Juliana Fonseca ◽  
...  

Calla lily is an appreciated specie used for flower arrangements. In spite of its commercial importance, there is little information on calla lily postharvest conservation. Thus, this study aimed to determine the best sucrose concentration for pulsing and cold storage conditions to extend calla lily postharvest durability. Flower stalks were submitted to a pulsing pre-treatment using 2, 4, 8, 12 and 16% sucrose in the solution, for one hour, plus a treatment with direct storage in cold chamber (4ºC), without a prior-treatment. Dry storage or storage in solution with the commercial product Flower® was also tested. A completely randomized design was used with four replicates and three inflorescences per plot. Spathe length and width were daily measured from which the opening and wilting processes were analyzed. It was observed that pulsing with sucrose was efficient in extending calla lily inflorescences opening process and durability. Dry storage for short periods (less than six days) can also be used, but a prior-treatment with 12% sucrose pulsing for one hour or with a water supply for the same period was required. For storage in solution, a pulsing with 5% or 7.5% sucrose was recommended.


2004 ◽  
Vol 67 (7) ◽  
pp. 1377-1383 ◽  
Author(s):  
S. M. L. STEVENSON ◽  
S. R. COOK ◽  
S. J. BACH ◽  
T. A. McALLISTER

To evaluate the potential of using electrolyzed oxidizing (EO) water for controlling Escherichia coli O157:H7 in water for livestock, the effects of water source, electrolyte concentration, dilution, storage conditions, and bacterial or fecal load on the oxidative reduction potential (ORP) and bactericidal activity of EO water were investigated. Anode and combined (7:3 anode:cathode, vol/vol) EO waters reduced the pH and increased the ORP of deionized water, whereas cathode EO water increased pH and lowered ORP. Minimum concentrations (vol/vol) of anode and combined EO waters required to kill 104 CFU/ml planktonic suspensions of E. coli O157:H7 strain H4420 were 0.5 and 2.0%, respectively. Cathode EO water did not inhibit H4420 at concentrations up to 16% (vol/vol). Higher concentrations of anode or combined EO water were required to elevate the ORP of irrigation or chlorinated tap water compared with that of deionized water. Addition of feces to EO water products (0.5% anode or 2.0% combined, vol/vol) significantly reduced (P < 0.001) their ORP values to <700 mV in all water types. A relationship between ORP and bactericidal activity of EO water was observed. The dilute EO waters retained the capacity to eliminate a 104 CFU/ml inoculation of E. coli O157:H7 H4420 for at least 70 h regardless of exposure to UV light or storage temperature (4 versus 24°C). At 95 h and beyond, UV exposure reduced ORP, significantly more so (P < 0.05) in open than in closed containers. Bactericidal activity of EO products (anode or combined) was lost in samples in which ORP value had fallen to ≤848 mV. When stored in the dark, the diluted EO waters retained an ORP of >848 mV and bactericidal efficacy for at least 125 h; with refrigeration (4°C), these conditions were retained for at least 180 h. Results suggest that EO water may be an effective means by which to control E. coli O157:H7 in livestock water with low organic matter content.


1997 ◽  
Vol 51 (9) ◽  
pp. 1394-1399 ◽  
Author(s):  
Patrick A. Walker ◽  
Jeremy M. Shaver ◽  
Michael D. Morris

Isotachophoresis (ITP), coupled with Raman spectroscopic detection, is used to separate and identify two cationic herbicides, paraquat and diquat, in spiked deionized water, municipal drinking water, and river water samples. On-line preconcentration is achieved with the use of field-amplified injection into a 0.03–0.1 M H2SO4 or Na2SO4 leading electrolyte solution, and isotachophoresis is achieved with the use of a 0.03–0.1 M tris(hydroxymethyl)—aminomethane (Tris) trailing electrolyte solution. The herbicides are concentrated to above 10−3 M at the detection window, allowing measurement of Raman spectra with 1-s integration windows. Spectra of the herbicides are obtained from solutions at initial concentrations in deionized water at 3.5 × 10−7 M (90 ppb) paraquat/5.8 × 10−8 M (20 ppb) diquat, from drinking water initially at 1.3 × 10−6 M (335 ppb) paraquat/1.0 × 10−6 M (360 ppb) diquat, and river water initially at 5.0 × 10−6 M (1.3 ppm) paraquat and 3.0 × 10−6 M (1.0 ppm) diquat. The utility of correlation to identify the presence of analytes and of factor analysis to recover spectra from solutions at low initial concentrations of the herbicides is demonstrated.


2016 ◽  
Vol 24 (2) ◽  
pp. 140-144 ◽  
Author(s):  
Min Kyung Lim ◽  
◽  
Sung Chun Lee ◽  
Wan Soon Kim
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document