scholarly journals (277) Morphological and Molecular Diversity in Coreopsis leavenworthii Populations

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1036C-1036
Author(s):  
David M. Czarnecki ◽  
Zhanao Deng ◽  
Madguhuri N. Rao ◽  
Frederick G. Gmitter ◽  
Young A. Choi ◽  
...  

As one of the Florida's state wildflowers, Coreopsis leavenworthii is highly desirable for roadside plantings in all parts of the state. Seeds of this species are being produced by growers. Where should seed be produced for different ecotypes? Where can the seed be used? These are among questions that have arisen in commercial seed production and distribution. To address these questions, it was necessary to assess the levels of genetic diversity. Eleven populations (242 total individuals) were collected from different parts of Florida, grown at one location in central Florida, and observed for morphological variations. North Florida natural populations had more complex leaves, while south Florida natural populations had smaller flowers. Principal component analyses revealed that two of the seven characteristics studied accounted for as much as 88% of the morphological variations observed. Molecular diversity was analyzed by using the fluorescent amplified fragment length polymorphism (AFLP) technique and the capillary sequencing system. Four primer combinations detected 320 AFLP fragments, of which 90.6% were polymorphic. The overall genetic diversity in the species was 0.2206 (estimated using AMOVA), of which 77.9% was within populations and 22.1% was among populations. The genetic distance among populations seemed to be loosely correlated with geographical distances. A high level of gene flow was found in several populations. Based on the results, a model has been developed to describe the genetic relationship of Coreopsis leavenworthii populations.

2008 ◽  
Vol 133 (2) ◽  
pp. 234-241 ◽  
Author(s):  
David M. Czarnecki ◽  
Madhugiri Nageswara Rao ◽  
Jeffrey G. Norcini ◽  
Frederick G. Gmitter ◽  
Zhanao Deng

Seeds of Coreopsis leavenworthii Torr. & Gray (Asteraceae) are being commercially produced but the lack of genetic diversity information has hindered growers and end users from addressing several critical issues affecting wild collection, commercial production, distribution, and the use of seeds. In this study, the genetic diversity and differentiation among natural, production, and introduced populations were analyzed at the molecular level using 320 amplified fragment length polymorphism (AFLP) markers. A high level of diversity [68.6% average polymorphism; total genetic diversity (H t ) = 0.309] and a moderate level of genetic differentiation [total genetic diversity residing among populations (G st ) = 0.226; Φ st = 0.244; Bayesian analog of Nei's G st (G st -B) = 0.197] was detected among six natural populations—two each from northern, central, and southern Florida. Two distance-based clustering analyses, based on an individual's AFLP phenotypes or a population's allele frequencies, grouped natural populations into three clusters, concordant with our previous results from a common garden study of phenotypic variation. Clustering of populations was mostly according to their respective geographical origin within Florida. The correlation between geographical distances and pairwise F st values between populations was very significant (r = 0.855, P < 0.0001). Two central Florida natural populations were divergent and grouped into separate clusters, indicating that the existence of factors other than physical distance alone were contributing to genetic isolation. Three production populations maintained a level of genetic diversity comparable to that in the natural populations and were grouped with the natural populations from which the production populations were derived, suggesting that the genetic identity of the seed origin was maintained under production practices. The genetic diversity of the introduced population was comparable to that of the source populations (central Florida natural populations), but genetic shift seems to have occurred, causing the introduced population to cluster with local (northern Florida) populations where planted. The observed genetic differentiation among natural populations may indicate a need to develop appropriate zones within Florida for preservation of genetic diversity during seed collection, increase, and distribution. This high level of population differentiation also suggests a need to collect and analyze more natural populations across Florida and from Alabama for a better understanding of the species' genetic diversity and population structure across its distribution range.


1970 ◽  
Vol 7 ◽  
pp. 56-63 ◽  
Author(s):  
Chunlin Long ◽  
Zhutan Jiang ◽  
Zhiling Dao

Ottelia acuminata (Gagnep.) Dandy (Hydrocharitaceae), an endangered aquatic species, was investigated in the Eastern Himalayas, especially in Yunnan Province of Southwest China. The genetic diversity among seven populations was examined using inter-simple sequence repeat (ISSR) amplification markers. The field survey showed that 43.5% natural populations of O. acuminata have become extinct during the last 30 years. Among 13 remaining wild populations, eight (61.5%) are on the edge of extinction and only five (38.5%) were unaffected. For the study on seven populations based on ten primers, 147 clear and reproducible DNA fragments were generated, of which 144 (97.96%) were polymorphic. Within populations, however, the polymorphic bands (PPB) generated by ISSRs was 53 and occupied 36.05% in population B, and similarly within population J (51 and 34.69%, respectively). The results showed that genetic variation is much higher among populations of O. acuminata than within populations. Analyses of Nei’s gene diversity, genetic distance and Shannon’s index also agreed with these results. The average value of Nei’s gene diversity (h) equaled 0.3710. The coefficient of genetic differentiation (Gst) equaled 0.5487, which means that 54.87% of the total molecular variance existed among populations. Such a high level of divergence present among populations may be caused by the complex topography and separated habitats which effectively restrict gene flow. Moreover, there is a lack of significant association between genetic and geographical distances (r = 0.28889, P > 0.05) in the populations of O. acuminata. Therefore, we proposed an appropriate strategy for conserving the genetic resources of O. acuminata in the Eastern Himalayas; namely, rescuing and conserving the core populations in situ, while selecting and preserving more populations with fewer individuals from each population ex situ. Key-words: Ottelia acuminata, genetic diversity, conservation, Eastern Himalayas, Yunnan Plateau, China DOI: 10.3126/botor.v7i0.4374Botanica Orientalis – Journal of Plant Science (2010) 7: 56-63


2021 ◽  
Author(s):  
Guai-qiang Chai ◽  
Yizhong Duan ◽  
Peipei Jiao ◽  
Zhongyu Du ◽  
Furen Kang

Abstract Background:Elucidating and revealing the population genetic structure, genetic diversity and recombination is essential for understanding the evolution and adaptation of species. Ammopiptanthus, which is an endangered survivor from the Tethys in the Tertiary Period, is the only evergreen broadleaf shrub grown in Northwest of China. However, little is known about its genetic diversity and underlying adaptation mechanisms. Results:Here, 111 Ammopiptanthus individuals collected from fifteen natural populations in estern China were analyzed by means of the specific locus amplified fragment sequencing (SLAF-seq). Based on the single nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) detected by SLAF-seq, genetic diversity and markers associated with climate and geographical distribution variables were identified. The results of genetic diversity and genetic differentiation revealed that all fifteen populations showed medium genetic diversity, with PIC values ranging from 0.1648 to 0.3081. AMOVA and Fst indicated that a low genetic differentiation existed among populations. Phylogenetic analysis showed that NX-BG and NMG-DQH of fifteen populations have the highest homology,while the genetic structure analysis revealed that these Ammopiptanthus germplasm accessions were structured primarily along the basis of their geographic collection, and that an extensive admixture occurred in each group. In addition, the genome-wide linkage disequilibrium (LD) and principal component analysis showed that Ammopiptanthus nanus had a more diverse genomic background, and all genetic populations were clearly distinguished, although different degrees of introgression were detected in these groups. Conclusion:Our study could provide guidance to the future design of association studies and the systematic utilization and protection of the genetic variation characterizing the Ammopiptanthus.


2011 ◽  
Vol 11 (3) ◽  
pp. 216-223 ◽  
Author(s):  
Liene Rocha Picanço Gomes ◽  
Maria Teresa Gomes Lopes ◽  
Jania Lilia da Silva Bentes ◽  
Willian Silva Barros ◽  
Pedro de Queiroz Costa Neto ◽  
...  

This study aimed to characterize the genetic diversity of buriti populations by AFLP (Amplified Fragment Length Polymorphism) markers. The analysis was performed in four populations used by traditional communities in the state of Amazonia (Bom Jesus do Anamã, Lauro Sodré, Santa Luzia do Buiçuzinho, and Esperança II). From each population 30 plants were randomly selected. To obtain the markers four primer combinations were used. The percentage of polymorphic loci was estimated, the molecular variance among and within populations analyzed and a dendrogram constructed. The primers detected 339 polymorphic loci ranging from 81.1 % to 91.1 % among populations. Analysis of molecular variance attributed 77.18 % to variation within and 22.8 % to variation between populations. The dendrogram indicated the formation of two groups, showing that the populations of Bom Jesus do Anamã and Lauro Sodré are genetically most similar and thet the genetic and geographical distances are not correlated.


2020 ◽  
Vol 69 (1) ◽  
pp. 86-93
Author(s):  
H. S. Ginwal ◽  
Rajesh Sharma ◽  
Priti Chauhan ◽  
Kirti Chamling Rai ◽  
Santan Barthwal

AbstractHimalayan cedar (Cedrus deodara) is one of the most important temperate timber species of Western Himalayas and is considered to be among the endangered conifer species in the region. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Ten polymorphic chloroplast microsatellites (cpSSR) were used to study genetic diversity and population structure in twenty one natural populations of C. deodara throughout its entire distribution range in Western Himalayas. When alleles at each of the 10 loci were jointly analysed, 254 different haplotypes were identified among 1050 individuals. The cpSSRs indicate that C. deodara forests maintain a moderately high level of genetic diversity (mean h = 0.79 ). AMOVA analysis showed that most of the diversity in C. deodara occurs within populations. Bayesian analysis for population structure (BAPS) revealed spatial structuration of the variation (22 % of the total variation) and substructuring captured nineteen genetic clusters in the entire divisions of the populations. Most of the populations were clustered independently with minor admixtures. The distribution of genetic diversity and sub-structuring of C. deodara may be due to restricted gene flow due to geographic isolation, genetic drift, and natural selection. These findings indicated existence of genetically distinct and different high diversity and low diversity clusters, which are potential groups of populations that require attention for their conservation and management. The results are interpreted in context of future conservation plans for C. deodara.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1365
Author(s):  
Lin Chen ◽  
Tingting Pan ◽  
Huirong Qian ◽  
Min Zhang ◽  
Guodong Yang ◽  
...  

Osmanthus serrulatus Rehder (Oleaceae) is an endemic spring-flowering species in China. It is narrowly distributed in the southwestern Sichuan Basin, and is facing the unprecedented threat of extinction due to problems associated with natural regeneration, habitat fragmentation and persistent and serious human interference. Here, the genetic diversity and population structure of 262 individuals from ten natural populations were analyzed using 18 microsatellites (SSR) markers. In total, 465 alleles were detected across 262 individuals, with a high polymorphic information content (PIC = 0.893). A high level of genetic diversity was inferred from the genetic diversity parameters (He = 0.694, I = 1.492 and PPL = 98.33%). AMOVA showed that a 21.55% genetic variation existed among populations and the mean pairwise Fst (0.215) indicated moderate genetic population differentiation. The ten populations were basically divided into three groups, including two obviously independent groups. Our results indicate that multiple factors were responsible for the complicated genetic relationship and endangered status of O. serrulatus. The concentrated distribution seems to be the key factor causing endangerment, and poor regeneration, human-induced habitat loss and fragmentation seem to be the primary factors in the population decline and further genetic diversity loss. These findings will assist in future conservation management and the scientific breeding of O. serrulatus.


2020 ◽  
Author(s):  
Duy Dinh Vu ◽  
Syed Noor Muhammad Shah ◽  
Mai Phuong Pham ◽  
Van Thang Bui ◽  
Minh Tam Nguyen ◽  
...  

Abstract Background: Understanding the genetic diversity in endangered species that occur in forest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population are unknown due to lack of efficient molecular markers. Results: In this study, we employed Illumina HiSeqTM 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). Raw reads total of 23,741,783 was obtained and then assembled, from which the generated unigenes were 89,271 (average length = 598.3191 nt). The 31,686 unigenes were annotated in different databases i.e. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Nucleotide Collection (NR/NT) and Swiss-Prot for functional annotation. Further, 11,343 EST-SSRs were detected. From 7,774 primer pairs, 101 were selected for polymorphism validation, in which; 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used for population structure and diversity analyses. The obtained results revealed high levels of genetic diversity in populations, the average observed and expected heterozygosity were HO = 0.422 and HE = 0.479, respectively. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of the bottleneck in all populations. Genetic differentiation between populations was moderate (FST = 0.133) and indicating slightly high level of gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. Our results shows two genetic clusters related to geographical distances. Conclusion: Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.


2015 ◽  
Vol 43 (1) ◽  
pp. 86-95 ◽  
Author(s):  
Imane MEDOUKALI ◽  
Ines BELLIL ◽  
Douadi KHELIFI

As part of the evaluation and enhancement of genetic resources, morphological and isozyme variability within and among 169 accessions, representing 14 species of the genus Medicago L. collected in northern Algeria, was assessed using twelve quantitative traits and two enzymatic systems. Phenotype frequencies were scored in six enzyme zones to determine isozyme variability within and among populations. The data analysis resolved a high level of genetic diversity. Ten morphometric characteristics contributed to the discrimination of the species. The relationship between the collection site environment and phenotypic characteristics was also studied. Esterase (EST) enzyme system was more polymorphic than glutamate oxaloacetate transaminase (GOT) system. Were scored 2 zones with 10 bands and 21 phenotypes for GOT (glutamate oxaloacetate transaminase) and 4 zones with 22 bands and 71 phenotypes for EST (esterase) Polymorphism index and Jaccard’s genetic distances revealed the existence of a high genetic diversity within and among the studied populations. The annual species M. polymorpha presented an intraspecific polymorphism index of 0.57, which was higher than all other species indices. Clustering of the species based on isozyme markers was in agreement with taxonomic criteria and showed no significant correlation with morphological characteristics. Conservation programs should take into account the level of genetic diversity within and between populations revealed by isozyme markers.


2003 ◽  
Vol 81 (8) ◽  
pp. 805-813 ◽  
Author(s):  
Hannele Lindqvist-Kreuze ◽  
Hilkka Koponen ◽  
Jari P.T Valkonen

The levels of genotypic and genetic variation were estimated in six natural populations of arctic bramble (Rubus arcticus L. subsp. arcticus) in Finland. Using three primer combinations, a total of 117 amplified fragment length polymorphisms (AFLP) were found. The results were highly reproducible and allowed identification of 78 genets among the 122 plants of arctic bramble studied. Genotypic variation measured as Simpson index (D) was high in all populations, ranging from 0.72 to 0.94. Also, the level of genetic variation measured as Shannon index was relatively high in all populations, ranging from 0.19 to 0.32 (average 0.26). The high levels of genetic diversity indicate that sexual reproduction has played a significant role in these populations. The hierarchical analysis of molecular variance (AMOVA) partitioned 48% of the genetic variation among populations, suggesting a high level of population differentiation and a low level of interpopulation gene flow. Genetic diversity among ten currently grown cultivars of arctic bramble and hybrid arctic bramble (R. arcticus subsp. arcticus × R. arcticus subsp. stellatus) was large, and the subspecies were clearly distinguished from each other based on the AFLP marker data.Key words: AFLP, AMOVA, population, natural habitat, Rubus arcticus subsp. arcticus, Rubus arcticus subsp. stellatus.


2020 ◽  
Vol 200 (9) ◽  
pp. 63-73
Author(s):  
Olesya Rayzer ◽  
Oksana Hapilina

Abstract. The purpose of the study. The estimation of genetic polymorphism of Kazakhstan populations of rare relict and endemic Allium species. The novelty of the research is the use of the modern molecular genetic iPBS (Inter- Primer Binding Site Polymorphism) method of DNA amplification to assess the genetic diversity of different populations of Allium sp., collected in their natural habitats in the Kazakhstan Altai. Methods. Samples of medicinal relict and endangered species A. ledebourianum, A. altaicum, A. microdiction were collected in the places of their natural growth in the territory of the Kazakhstan Altai. DNA was isolated from 3–5 day sterile seedlings using lysis STAB buffer with RNaseA. PBS primers were used to assess the genetic diversity of different populations of Allium spp. The amplification results obtained using different PBS primers were evaluated in the GenAlex 6.5 macro program for Excel. Results. The polymorphism of 16 genotypes of the rare relict and endangered Allium sp. was analyzed using 7 PBS primers. Clearly distinguishable amplicons were obtained, the number of which varied depending on the primer used. The dendrogram, based on UPGMA analysis, grouped the studied genotypes into 2 main clusters, one of which included samples from the A. altaicum population, and the second cluster included samples from the A. ledebourianum population. A. microdiction represented by one sample did not enter any cluster, and formed a basal branch in the dendrogram. The results of the study have revealed a high degree of iPBS polymorphism and genetic diversity in rare relict and endangered Allium sp. Practical significance. The use of the molecular genetic iPBS method allows to identify a high level of polymorphism, which can serve as a basis for the identification of various genotypes of the Allium sp., which will significantly supplement traditional preservation methods of natural populations of this genus.


Sign in / Sign up

Export Citation Format

Share Document