scholarly journals Empirical Models of Phosphorus Uptake under Different Nitrogen Sources in Dieffenbachia amoena ‘Tropic Snow’

HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 412-416 ◽  
Author(s):  
Silvia Jiménez ◽  
Mónica Pérez ◽  
Blanca María Plaza ◽  
Roberto Salinas ◽  
María Teresa Lao

The study of models for better nutrient uptake estimation can help to improve integrated fertigation management, allowing enhanced water and fertilization use efficiency. The aim of this work was the development of empirical models that permit the prediction of the phosphorus (P) nutritional needs of Dieffenbachia amoena to increase P use efficiency in a recycled system. To achieve this, P uptake was correlated to climate parameters, such as temperature (T), vapor pressure deficit, and global radiation (Rg), and to growth parameters such as leaf area index (LAI). In addition, the influence of the N form supply (NO3 –-N or NH4 +-N) on P uptake was studied. The trial was carried out with Dieffenbachia amoena ‘Tropic Snow’ plants growing in a recycled system with expanded clay as substrate. The crop was placed in an INSOLE buried solar greenhouse, with the plants supplied with equal amounts of N, differing in the percentage of the N form applied: Ta (100 NO3 – : 0 NH4 +), Tb (50 NO3 – : 50 NH4 +) and Tc (0 NO3 – : 100 NH4 +). The N form applied to Dieffenbachia amoena ‘Tropic Snow’ plants affects P and N uptake, but it does not influence K uptake. Nitrogen and P uptake rates are higher in the plants supplied with NH4 + or NO3 – + NH4 + than in the plants provided with NO3 – alone. The supply of a combination 50 NO3 – : 50 NH4 + improves P use efficiency. The study also indicates the possibility of predicting the P uptake rate and P uptake concentration using the proposed models. Phosphorus uptake can be estimated with a model dependent on the LAI in the NO3 –-N treatments and on the LAI and Rg in the NH4 +-N treatments. The P uptake concentration can be calculated with the P uptake, estimated through the previous model, and the experimental water uptake. This parameter would permit the nutritive solutions design, decreasing nutrient losses in open systems.

HortScience ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 575-579 ◽  
Author(s):  
Silvia Jiménez Becker ◽  
Maria Teresa Lao ◽  
Mari Luz Segura

Adjusting fertility programs according to peak demand periods will help prevent periodic nutrient disorders during crop growth, allowing enhanced use efficiency of water and fertilization. The objectives of this article were to investigate 1) the evolution of the changes in the concentration of nitrate and ammonium in the recycled solution with different N-NO3 –/N-NH4 + ratios; 2) the influence of the N form supply (N-NO3 – or N-NH4 +) on the nitrogen uptake, the nitrogen:water uptake ratio, and nitrogen use and uptake efficiency; and 3) the development of empirical models that would allow the prediction of nitrogen nutritional needs of Dieffenbachia amoena to increase the N use efficiency in a recycled system. To achieve these aims, N uptake has been correlated to climate parameters such as temperature, vapor pressure deficit and global radiation, and growth parameters such as leaf area index. The trial was carried out with Dieffenbachia amoena plants growing in a recycled system with expanded clay as substrate. The crop was placed in an INSOLE (Buried Solar Greenhouse), the plants being supplied with equal amounts of N, differing in the percentage of the N form applied (NO3 –:NH4 +): TA (100:0), TB (50:50), and TC (0:100). The nitrogen form generated important changes in the pH and nitrate and ammonium concentration in nutritive solution during the recirculating solution. In N-NO3 – treatment, pH increased and nitrate concentration showed a tendency to drop slightly. N-NH4 + treatment showed an abrupt N-NH4 + concentration decrease, and N-NO3 – concentration increased along with a pH drop. Also, the nitrogen form applied to the Dieffenbachia amoena crop affects nitrogen uptake. Nitrogen uptake rates and nitrogen uptake concentration were higher in the plants supplied with N-NH4 + or NO3 –+NH4 + than in the plants provided with N-NO3 – alone. The supply of a combination of 50:50 NO3 –+NH4 + improved the N use efficiency. The study also indicated the possibility of predicting the N uptake rate and N uptake concentration using the proposed models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2021 ◽  
Author(s):  
Aung Zaw Oo ◽  
YASUHIRO TSUJIMOTO ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

Abstract Improved phosphorus (P) use efficiency for crop production is needed given the depleting phosphorus ore deposits and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the soil surface; the qsor1-NIL had the greatest root biomass and root surface area in the 0–3 cm soil layer despite no genotype differences in total values; the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 765 ◽  
Author(s):  
Latati ◽  
Dokukin ◽  
Aouiche ◽  
Rebouh ◽  
Takouachet ◽  
...  

Little is known about how the performance of legumes symbiosis affects biomass and nutrient accumulation by intercropped cereals under the field condition. To assess the agricultural services of an intercropping system; durum wheat (Triticum turgidum durum L.cv. VITRON) and chickpea (Cicer arietinum L.cv. FLIP 90/13 C) were cultivated as both intercrops and sole cropping during two growing seasons under the field trial, to compare plant biomass, nodulation, N and phosphorus (P) uptake, and N nutrition index. Both the above-ground biomass and grain yield and consequently, the amount of N taken up by intercropped durum wheat increased significantly (44%, 48%, and 30%, respectively) compared with sole cropping during the two seasons. However, intercropping decreased P uptake by both durum wheat and chickpea. The efficiency in use of rhizobial symbiosis (EURS) for intercropped chickpea was significantly higher than for chickpea grown as sole cropping. The intercropped chickpea considerably increased N (49%) and P (75%) availability in durum wheat rhizosphere. In the case of chickpea shoot, the N nutrition (defined by the ratio between actual and critical N uptake by crop) and acquisition were higher in intercropping during only the first year of cropping. Moreover, biomass, grin yield, and resource (N and P) use efficiency were significantly improved, as indicated by higher land equivalent ratio (LER > 1) in intercropping over sole cropping treatments. Our findings suggest that change in the intercropped chickpea rhizosphere-induced parameters facilitated P and N uptake, above-ground biomass, grain yield, and land use efficiency for wheat crop.


2019 ◽  
Vol 13 (1) ◽  
pp. 133-145
Author(s):  
Mohammed Al-Chammaa ◽  
Farid Al-Ain ◽  
Fawaz Kurdali

Background: During the freezing or canning preparation process of green grain leguminous, large amounts of shell pods are considered as agricultural organic wastes, which may be used as Green Manure (GM) for plant growth enhancement. Objective: Evaluation of the effectiveness of soil amended with shell pod wastes of pea (PGM) or faba bean (FGM) as GM on growth, nitrogen and phosphorus uptake in sorghum plants. Methods: Determination of the impact of adding four rates of nitrogen (0, 50, 100, and 150 kg N ha-1) in the form of pea (PGM) or faba bean (FGM) shell pod wastes as GM on the performance of sorghum using the indirect 15N isotopic dilution technique. Results: Sorghum plants responded positively and differently to the soil amendments with either GMs used, particularly, the PGM. In comparison with the control (N0), soil amendment with an equivalent rate of 3.5 t ha-1 of PGM (PGM100) or with 6.5 t ha-1 of FGM (FGM150) almost doubled dry weight, N and P uptake in different plant parts of sorghum. Regardless of the GM used, estimated values of %Ndfgm in sorghum plants ranged from 35% to 55% indicating that the use of pod shells as GM provided substantial portions and amounts of N requirements for sorghum. Moreover, nitrogen recoveries of added GM (%NUEgm) ranged from 29 to 45% indicating that N in both of GM forms were used effectively. Accordingly, equivalent amounts to 17 - 48 kg N ha-1 of inorganic fertilizer may be saved. The beneficial effect of incorporating pod shells in soil on sorghum N was mainly attributed to their N availability, besides to their effects on the improvement of soil N uptake, particularly when using PGM. Conclusion: The agricultural by-products of faba bean and pea pod shells could be used as GM for sorghum growth improvement by enhancing N and P uptake from soil and from the organic source.


2011 ◽  
Vol 27 (2) ◽  
pp. 147-161 ◽  
Author(s):  
Sean M. Gleason ◽  
Jennifer Read ◽  
Adrian Ares

Abstract:Concurrent nutrient and radiation limitation in forests may engender trade-offs between P-use and radiation-use efficiency in tree species. To quantify these trade-offs, structural and physiological traits were examined among five rain-forest species subjected to four levels of fertilization and two levels of radiation in a glasshouse experiment. Schist specialists,Cryptocarya lividulaandCeratopetalum virchowii, occur only on P-poor schist soils, whereas soil generalists,Cryptocarya mackinnoniana,Franciscodendron laurifoliumandMyristica insipida, occur on both P-poor schist and P-rich basalt soils. Wild seedlings less than 20 cm tall and 1 y old were collected from field sites, treated with fungicide, sorted into treatments (48 plants per species), and grown for 11 mo. We hypothesized that soil specialists would possess mainly non-plastic traits conferring high P-use efficiency, whereas soil generalists would possess markedly plastic traits conferring high radiation capture and use, enabling them to outcompete specialists on P-rich soils. Only generalistC. mackinnonianaand specialistC. virchowiisupported these hypotheses.Cryptocarya mackinnonianahad more plastic root mass fraction, leaf area ratio, P uptake, and higher C assimilation thanC. virchowii, which resulted in greater relative growth rates in high P treatments, but lower P-use efficiency in low P treatments. In contrast, specialistC. lividulademonstrated similar trait plasticity asC. mackinnoniana, suggesting that plasticity in these traits may be poor indicators of fitness on P-poor soils.


2009 ◽  
Vol 33 (2) ◽  
pp. 335-343 ◽  
Author(s):  
Sílvio Júnio Ramos ◽  
Valdemar Faquin ◽  
Carlos Ribeiro Rodrigues ◽  
Carlos Alberto Silva ◽  
Paulo Fernandes Boldrin

A major constraint to agricultural production in acid soils of tropical regions is the low soil P availability, due to the high adsorption capacity, low P level in the source material and low efficiency of P uptake and use by most of the modern varieties grown commercially. This study was carried out to evaluate the biomass production and P use by forage grasses on two soils fertilized with two P sources of different solubility. Two experiments were carried out, one for each soil (Cambisol and Latosol), using pots filled with 4 dm³ soil in a completely randomized design and a 4 x 2 factorial scheme. The treatments consisted of a combination of four forage plants (Brachiaria decumbens, Brachiaria brizantha, Pennisetum glaucum and Sorghum bicolor) with two P sources (Triple Superphosphate - TSP and Arad Reactive Phosphate - ARP), with four replications. The forage grasses were harvested at pre-flowering, when dry matter weight and P concentrations were measured. Based on the P concentration and dry matter production, the total P accumulation was calculated. With these data, the following indices were calculated: the P uptake efficiency of roots, P use efficiency, use efficiency of available P, use efficiency of applied P and agronomic efficiency. The use of the source with higher solubility (TSP) resulted, generally, in higher total dry matter and total P accumulation in the forage grasses, in both soils. For the less reactive source (ARP), the means found in the forage grasses, for use efficiency and efficient use of available P, were always higher when grown in Latosol, indicating favorable conditions for the solubility of ARP. The total dry matter of Brachiaria brizantha was generally higher, with low P uptake, accumulation and translocation, which indicated good P use efficiency for both P sources and soils. The forage plants differed in the P use potential, due to the sources of the applied P and of the soils used. Less than 10 % of the applied P was immobilized in the forage dry matter. Highest values were observed for TSP, but this was not reflected in a higher use efficiency of P from this source.


1999 ◽  
Vol 132 (2) ◽  
pp. 181-188 ◽  
Author(s):  
M. S. AULAKH ◽  
N. S. PASRICHA

A field experiment was conducted for 5 years (1992/93–1996/97) on Tolewal sandy loam soil (Typic Ustochrepts) in the subtropical region of northwest India (Ludhiana), to evaluate the effect of four rates of fertilizer P (0, 20, 30 and 40 kg P2O5/ha) applied at three frequencies representing direct, residual and cumulative P treatments on crop yields, P uptake, fertilizer P-use efficiency and fertilizer P recovery by groundnut (Arachis hypogaea) and mustard (Brassica napus) grown in a rotation.Groundnut responded to an application of P up to 20 kg P2O5/ha when the preceding mustard crop did not receive fertilizer P. However, when the mustard received 40 kg P2O5/ha, the succeeding groundnut crop did not respond to additional P applied to it, but obtained the required P from that which was in the soil including the residue from the previous application. The mustard crop responded significantly (46%) to P up to 40 kg P2O5/ha rate but there was a much less response (13–27%) to residual P that was applied to the preceding groundnut. The differences between these two crops are due to differences in climate between the mustard and groundnut growing seasons and corresponding differences in soil conditions, and perhaps also to differences in the P-solubilizing abilities of the two crops. The results suggest that in groundnut–mustard rotations grown under these climatic conditions, a direct application of 40 kg P2O5/ha to mustard would suffice to meet the P needs of both crops. This would be the most efficient way of using fertilizer P, increasing P recovery and improving total biomass partitioning to mustard seed or groundnut pod yield.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 191 ◽  
Author(s):  
Patricia Poblete-Grant ◽  
Philippe Biron ◽  
Thierry Bariac ◽  
Paula Cartes ◽  
María de La Luz Mora ◽  
...  

To maintain grassland productivity and limit resource depletion, scarce mineral P (phosphorus) fertilizers must be replaced by alternative P sources. The effect of these amendments on plant growth may depend on physicochemical soil parameters, in particular pH. The objective of this study was to investigate the effect of soil pH on biomass production, P use efficiency, and soil P forms after P amendment application (100 mg kg−1 P) using poultry manure compost (PM), rock phosphate (RP), and their combination (PMRP). We performed a growth chamber experiment with ryegrass plants (Lolium perenne) grown on two soil types with contrasting pH under controlled conditions for 7 weeks. Chemical P fractions, biomass production, and P concentrations were measured to calculate plant uptake and P use efficiency. We found a strong synergistic effect on the available soil P, while antagonistic effects were observed for ryegrass production and P uptake. We conclude that although the combination of PM and RP has positive effects in terms of soil P availability, the combined effects of the mixture must be taken into account and further evaluated for different soil types and grassland plants to maximize synergistic effects and to minimize antagonistic ones.


2020 ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

ABSTRACTThe development of genotypes and fertilizer management practices that facilitate high phosphorus (P) use efficiency is needed given the depleting phosphorus ore deposits and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has not been examined. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots in a uniform and P-sufficient condition (Pinco), and with localized P application by dipping seedling roots into P-enriched slurry at transplanting (P-dipping). The P-dipping created an available P hotspot at the soil surface and substantially improved applied P-use efficiency (equivalent biomass at one fifth of application rate of the Pinco). Further, the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The qsor1-NIL consistently had a greater root biomass and surface area in the 0–3 cm soil layer, despite that there were no genotype differences in total values and that the other genotypes also reduced their RGAs responding to the P hotspot in the P-dipping. The shallow root system of qsor1-NIL facilitated P uptake from the P hotspot. P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


Sign in / Sign up

Export Citation Format

Share Document