scholarly journals Springtime Dandelion (Taraxacum officinale) Control with Seven Postemergence Herbicides Applied at Three Anthesis Stages

HortScience ◽  
2014 ◽  
Vol 49 (9) ◽  
pp. 1212-1216 ◽  
Author(s):  
Zane Raudenbush ◽  
Steven J. Keeley

Although spring is not considered the optimal time for herbicidal control of most cool-season broadleaf weeds in turfgrass, spring applications are often required. Most new postemergence broadleaf herbicides combine several active ingredients, possibly resulting in synergistic, antagonistic, or additive effects. Therefore, as new herbicides become available, information is needed about their performance when applied in the spring. The objective of our study was to determine the effect of spring application timing on dandelion control with seven commercially available postemergence herbicides. Products were applied at their lowest labeled rate for dandelion control at three spring application timings, which coincided with dandelion anthesis stages (pre-, peak-, or post-bloom). A grid was used to determine percent dandelion control at several rating dates. The 2010 site had a denser turfgrass stand with smaller dandelions and was irrigated more frequently compared with the 2011 site. In 2010, all herbicides gave 98% or greater control at 30 days after treatment (DAT) when applied post-bloom; when applied pre- or peak-bloom, control was 80% or greater for all herbicides except for two products applied peak-bloom. At pre- and peak-bloom, products combining a protoporphyrinogen oxidase (PPO) inhibitor with a 2,4-D ester formulation were superior to most other herbicides. When evaluated at the end of the growing season in 2010, all herbicides provided 89% or greater control at all three timings. In 2011, with a less dense turfgrass stand, larger dandelions, and less frequent irrigation, control was more variable and shorter-lived among herbicides. When applied pre-bloom, all products containing 2,4-D provided 87% or greater control 60 DAT. Post-bloom application generally gave similar control to the pre-bloom timing. Peak-bloom application resulted in the poorest overall control at 60 DAT, but products combining a PPO inhibitor with a 2,4-D ester formulation performed better than most other herbicides. By the end of the season, dandelion regrowth caused reduced overall control at all timings, but overall control was poorest when applied at peak-bloom. In summary, peak-bloom applications should be avoided, especially if dandelion pressure is high. Products combining PPO inhibitors with ester forms of 2,4-D were most effective across all spring application timings. Products containing amine forms of 2,4-D may provide effective control if applied pre- or post-bloom.

Author(s):  
Efstratios Nikolaidis ◽  
Harley Cudney ◽  
Sophie Chen ◽  
Raphael T. Haftka ◽  
Raluca Rosca

Abstract This paper compares probabilistic and possibility-based methods for design against catastrophic failure under uncertainty. It studies the effect of the amount of information on the effectiveness of each method. The study is confined to problems where the boundary between survival and failure is sharp. First, the paper examines the theoretical foundations of probability and possibility. It also compares the two methods when they are used to assess the risk of a system. Finally, it compares the two methods on two design problems. A major difference between probability and possibility is in the axioms about the union of events. Because of this difference, probability and possibility calculi are fundamentally different and one cannot simulate possibility calculus using probabilistic models. It is shown that possibility-based methods can be less conservative than probability-based methods in systems with many failure modes. On the other hand, possibility-based methods tend to be more conservative than probability-based methods in systems that fail only if many unfavorable events occur simultaneously. Probabilistic methods are better than possibility-based methods if sufficient information is available. However, the latter can be better if little information is available. A principal reason is that it is easier to identify the most conservative possibilistic model than the most conservative probabilistic model that is consistent with the available information.


1989 ◽  
Vol 3 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Edward S. Hagood

Field experiments were established to evaluate preemergence and postemergence herbicides for control of triazine-resistant smooth pigweed and common lambsquarters in no-till corn. When applied preemergence, alachlor in the microencapsulated formulation controlled smooth pigweed better than the emulsifiable concentrate formulation and better than either metolachlor or pendimethalin. These herbicides applied preemergence did not control common lambsquarters consistently. Pendimethalin controlled both triazine-resistant species when applied as a sequential treatment of a preemergence and an early postemergence application. Control of triazine-resistant smooth pigweed and common lambsquarters was excellent when dicamba was applied early postemergence in treatments containing alachlor, metolachlor, or pendimethalin applied preemergence and/or early postemergence. Thiameturon and CGA-131036 controlled triazine-resistant smooth pigweed with acceptable crop tolerance. Thiameturon also controlled common lambsquarters, but control was unacceptable with CGA-131036.


2006 ◽  
Vol 20 (3) ◽  
pp. 551-557 ◽  
Author(s):  
Timothy L. Grey ◽  
Paul L. Raymer ◽  
David C. Bridges

Field studies were conducted to evaluate weed control in herbicide-resistant canola in Georgia. The resistant canola cultivars and respective herbicides were ‘Pioneer 45A76’ and imazamox, ‘Hyola 357RR’ and glyphosate, and ‘2573 Invigor’ and glufosinate. Weed seed of Italian ryegrass and wild radish were sown simultaneously in October with canola and control of these species was evaluated along with other naturally occurring weeds. Herbicide treatments for the respective herbicide-resistant canola cultivar were imazamox at 0.035 and 0.071 kg ai/ha, glyphosate at 0.84 and 1.64 kg ae/ha, and glufosinate at 0.5 and 1.0 kg ai/ha. Herbicides were applied at one– two-leaf (LF) and three–four-LF canola stages. There was no significant injury to any canola cultivar as a result of herbicide rate or timing of application. By midseason (February), imazamox effectively controlled wild radish, henbit, and shepherd's-purse at both rates and at both timings. When applied to three–four-LF canola, the higher rates of glyphosate and glufosinate were required to provide 75% or greater control of Italian ryegrass, wild garlic, and henbit. Glufosinate did not adequately control wild radish at either rate or application timing. Greenhouse experiments provided similar results.


2011 ◽  
Vol 187 ◽  
pp. 169-174 ◽  
Author(s):  
Yu Cheng Liu ◽  
Yu Bin Liu

For complex controlled object with the large time delay link, it was difficult to get effective control effect by means of traditional fuzzy control algorithm. Aimed at enhancing the control quality in control precision and so on for complex system, the paper proposed a sort of fuzzy intelligence control strategy. It fused the expert control experience combing with human simulated intelligence control, designed the control rule, proposed the mode of running controller and explored the principle of parameter calibrating layer. The system simulation experiment explained that the control effect was much better than optimal PID control in dynamic and steady quality. The results show that the fuzzy intelligent control strategy is reasonable and feasible, high in control precision, better in dynamical and steady control effect, and it represents very strong robustness.


Weed Science ◽  
2011 ◽  
Vol 59 (3) ◽  
pp. 390-397 ◽  
Author(s):  
Ivan Sartorato ◽  
Antonio Berti ◽  
Giuseppe Zanin ◽  
Claudio M. Dunan

The introduction of herbicide-resistant crops and postemergence herbicides with a wide action spectrum shifted the research focus from how to when crops should be treated. To maximize net return of herbicide applications, the evolution of weed–crop competition over time must be considered and its effects quantified. A model for predicting the yield trend in relation to weed removal time, considering emergence dynamics and density, was tested on data from glyphosate-resistant soybean grown in cropping systems in Italy and Argentina. Despite an ample variation of weed emergence dynamics and weed load in the four trials, the model satisfactorily predicted yield loss evolution. The estimated optimum time for weed control (OTWC) varied from about 18 d after soybean emergence in Argentina to 20 to 23 d in Italy, with time windows for spraying ranging from 14 to 28 d. Within these limits a single glyphosate application ensures good weed control at low cost and avoids side effects like the more probable unfavorable weed flora evolution with double applications and the presence of residues in grains. Despite the apparent simplicity of weed control based on nonselective herbicides, the study outlines that many variables have to be considered to optimize weed management, particularly for the time evolution of the infestation and, subsequently, a proper timing of herbicide application.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2438
Author(s):  
Josemar Gonçalves de Oliveira de Oliveira Filho ◽  
Marcela Miranda ◽  
Marcos David Ferreira ◽  
Anne Plotto

Fresh fruits and vegetables are perishable commodities requiring technologies to extend their postharvest shelf life. Edible coatings have been used as a strategy to preserve fresh fruits and vegetables in addition to cold storage and/or controlled atmosphere. In recent years, nanotechnology has emerged as a new strategy for improving coating properties. Coatings based on plant-source nanoemulsions in general have a better water barrier, and better mechanical, optical, and microstructural properties in comparison with coatings based on conventional emulsions. When antimicrobial and antioxidant compounds are incorporated into the coatings, nanocoatings enable the gradual and controlled release of those compounds over the food storage period better than conventional emulsions, hence increasing their bioactivity, extending shelf life, and improving nutritional produce quality. The main goal of this review is to update the available information on the use of nanoemulsions as coatings for preserving fresh fruits and vegetables, pointing to a prospective view and future applications.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 480B-480
Author(s):  
F.S. Davies ◽  
M.W. Fidelibusa ◽  
C.A. Campbell

Gibberellic acid (GA) applied in late summer or fall delays subsequent loss of peel puncture resistance (PPR) and development of yellow peel color in many citrus cultivars. Our objective was to determine the optimal time to apply GA for increasing juice yield of `Hamlin' sweet orange [Citrus sinensis (L.) Osb.]. Mature trees on sour orange (Citrus aurantium L.) rootstock were sprayed with ≈24 L of a solution of GA (45 g a.i./ha) and organo-silicone surfactant (Silwet, 0.05%). Trees were sprayed on 26 Aug., 9 Sept., 2 Oct. (colorbreak), or 13 Oct. 1997, or nonsprayed (control). Peel puncture resistance, peel color, and juice yield were evaluated monthly between Dec. 1997 and Mar. 1998. Fruit from trees sprayed with GA had peels with higher PPR and less yellow color than fruit of control trees for most of the harvest season. The effect of GA on PPR and peel color lasted about 5 months. Juice yield was usually numerically greater for GA-treated fruit than for nontreated fruit. Fruit treated with GA at color break had significantly greater juice yield when harvested in late February than fruit from control trees. Thus, GA applied at color break appears to be the most effective time for enhancing peel quality and juice yield of `Hamlin' oranges.


2019 ◽  
pp. 51-56
Author(s):  
Babich ◽  
Babich

An integrated system for protecting potatoes from a golden potato cyst nematode has been developed, adapted for use in agricultural farms of various forms of ownership and includes a number of protective measures: the imposition of quarantine, a differentiated choice of unaffected crops (in collective and farm enterprises: lupine, winter wheat, sugar beet, Vico – oats , corn, barley with clover seed, clover, winter wheat, fodder beet; peas, winter wheat, corn. in individual farms: strawberries, green cultures, table beets, resistant varieties of potatoes, carrots, cabbage, cucumbers, peas, onions, garlic, cabbage. To reduce the level of invasion by the larvae of the initial phases of growth and development of plants to a golden potato cyst nematode, the treatment of tubers with a Kruiser 350 FS bp is recommended. – 0.3 l / t, as well as preparations based on metabolites of soil streptomycetes (Averkom, Averstim), as well as planting tubers in an early-optimal time in order to obtain seedlings of potatoes before the mass release of larvae from cysts. Local selective harvesting of susceptible varieties in the budding-flowering phase of potatoes and destruction of sprouts of unwanted vegetation by manual and mechanical means of tillage are aimed at interrupting the cycle of development of a golden potato cyst nematode and reducing the level of soil population. compliance with environmentally safe and affordable protective measures ensures effective control of the golden potato cyst nematode and the prevention of significant losses of potato yield. The developed protective measures do not require significant investments and are acceptable for implementation in farms of various forms of ownership.


Author(s):  
Graeme Bourdôt ◽  
Warren King ◽  
Grant Rennie

Giant buttercup (Ranunculus acris L. subsp. acris), a weed of European origin with a potential distribution embracing all of New Zealand, currently infests pastures in six of 17 dairying regions. It reduces the quantity of pasture consumed by deterring grazing, but its impact on whole-farm profitability is not well understood. To redress this, the effect of the weed and the impact of herbicides varying in efficacy were modelled with Farmax Dairy Pro®. On a dairy farm "typical" of the Golden Bay area, with the ground cover of giant buttercup peaking at 12% in November (the average per paddock cover measured on an infested farm), profit was reduced by $1040/ha ($1830 vs. $2870). Synthetic herbicides applied at label rates increased profitability, but only where the control was better than ca. 30% with MCPA or ca. 60% with flumetsulam. By contrast, a hypothetical biological herbicide giving 50% control had a break-even cost of $485/ha. The models show that giant buttercup reduces the profitability of a typical Golden Bay dairy farm by 36% and that its effective control can bring large financial gains. Keywords: dairy pasture, economics, Farmax Dairy Pro®, model, profitability, weed control


HortScience ◽  
2002 ◽  
Vol 37 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Matthew W. Fidelibus ◽  
Frederick S. Davies ◽  
Craig A. Campbell

Gibberellic acid (GA3) increases juice yield of processing oranges, but results are inconsistent. Preliminary research suggested that this variability might be related to application timing. Therefore, we conducted an experiment to determine the optimal time to apply GA3 for increasing juice yield of `Hamlin', `Pineapple', and `Valencia' sweet oranges [Citrus sinensis (L.) Osb.]. Mature trees of each cultivar were sprayed with ≈10 L of a solution of GA3 (45 g·ha-1 a.i.) and organo-silicone surfactant (Silwet, 0.05%) between 2 Sept. and 9 Dec. 1998, and 25 Sept. and 9 Dec. 1999, or remained non-sprayed (control). Generally, the earliest application dates were most effective at maintaining peel puncture resistance above that of control fruit, while the latest application dates resulted in the most green peel color at harvest. Juice yield of `Hamlin' and `Valencia', but not `Pineapple', was increased by GA3 at some application timings and harvest dates in both years. The increase in juice yield was related to time between application and harvest; juice yield of `Hamlin' was greatest ≈2 months, and `Valencia' ≈5 months after GA3 application. Treated fruit often had lower juice Brix than non-sprayed fruit, a phenomenon that often paralleled treatment effects on peel color. When treatments did not increase juice yield but reduced juice Brix, then yield of solids was sometimes lower than for non-treated fruit. Treatments generally delayed flowering of `Pineapple' and `Valencia' but not `Hamlin'.


Sign in / Sign up

Export Citation Format

Share Document