scholarly journals Growth, Photosynthesis, and Nutrient Uptake at Different Light Intensities and Temperatures in Lettuce

HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 1925-1933
Author(s):  
Jing Zhou ◽  
PingPing Li ◽  
JiZhang Wang ◽  
Weiguo Fu

Light and temperature are two crucial factors affecting plant growth. Light intensities vary considerably with season and weather conditions. Reasonable light regulation at different temperatures is a key issue in environmental regulation. In this study, we determined the effects of light intensity and temperature on crop growth and development. Furthermore, we determined an optimal light value and a suitable light range at different temperatures for producing the lettuce Lactuca sativa L. Artificial climate chamber experiments were conducted at five light intensities (100, 200, 350, 500, and 600 μmol·m−2·s−1), as well as at low (15 °C/10 °C), medium (23 °C/18 °C), and high (30 °C/25 °C) temperatures. In these experiments, we investigated the photosynthetic rate; chlorophyll fluorescence parameters; total N, P, and K uptake; and growth of lettuce plants. The results indicated that at a low temperature, the values of effective quantum yield of photosystem II photochemistry (ΦPSII), net photosynthetic rate (Pn), stomatal conductance (gS), and transpiration rate (Tr) —as well as those of N, K, and P uptake—were the highest at 350 μmol·m−2·s−1, followed by 500 μmol·m−2·s−1, which resulted in higher values for leaf number (LN), leaf area (LA), dry weight (DW), and fresh weight (FW). At the medium temperature, the values of ΦPSII, Pn, gS, and Tr, as well as those of N, K, and P uptake were higher at 350, 500, and 600 μmol·m−2·s−1 than at other light intensities, resulting in high values for LN, LA, DW, and FW of lettuce plants. The LN, LA, and FW of lettuce plants were the highest at 500 μmol·m−2·s−1, whereas DW was the highest at 600 μmol·m−2·s−1. At a high temperature, lettuce plants exhibited the highest values of Fv/Fm, ΦPSII, Pn, gS, and Tr, as well as those of N, K, and P uptake for the 500 μmol·m−2·s−1 treatment; whereas LN, LA, FW, and DW were the highest at 600 μmol·m−2·s−1. In addition, the values of Fv/Fm indicated that lettuce plants were under stress under the following combinations: 600 μmol·m−2·s−1 at the low temperature, 100 μmol·m−2·s−1 at the medium temperature, and 100–350 μmol·m−2·s−1 at the high temperature. Based on these results, an optimal regulation strategy for light intensity at different temperature environments was proposed for lettuce cultivars similar to L. sativa L. in some regions, such as the subtropical regions of China. Specifically, for low temperatures, light intensities of 350 to 500 μmol·m−2·s−1are recommended for production, and an intensity of 350 μmol·m−2·s−1 provides optimal supplementary light during early spring and winter in greenhouses. For medium temperatures, light intensities of 350 to 600 μmol·m−2·s−1 are recommended, and 500 μmol·m−2·s−1 is the optimal value during the middle of spring and autumn. For high temperatures, light intensities of 500 to 600 μmol·m−2·s−1are recommended, and 600 μmol·m−2·s−1 is the optimal value of light intensity during late spring and early autumn.

Weed Science ◽  
1982 ◽  
Vol 30 (3) ◽  
pp. 286-290 ◽  
Author(s):  
Robert R. Krueger ◽  
Dale L. Shaner

Germination of prostrate spurge (Euphorbia supinaRaf.) seeds collected in August, September, October, and November 1977 at Riverside, California was 53, 30, 18, and 16%, respectively. Stratification of seeds collected in August, September, and October at 5 C for 3 weeks or more increased germination to 70 to 80%. Prostrate spurge seeds germinated at constant temperatures of 20 to 40 C, with optimum temperatures of 25 to 30 C. Maximum germination occurred under alternating temperatures with a high temperature of 30 to 35 C and a low temperature of 15 to 25 C. Germination in the dark was much lower than in the light. Seedling establishment of seeds collected in August sown at 0.0- to 0.5-cm depths was 30 to 35%, but establishment from 2 cm declined to near 0%. Light intensity did not affect the number of seedlings established, but the seedlings established were larger under higher light intensities.


2019 ◽  
Vol 32 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Luma Rayane de Lima Nunes ◽  
Paloma Rayane Pinheiro ◽  
Charles Lobo Pinheiro ◽  
Kelly Andressa Peres Lima ◽  
Alek Sandro Dutra

ABSTRACT Salinity is prejudicial to plant development, causing different types of damage to species, or even between genotypes of the same species, with the effects being aggravated when combined with other types of stress, such as heat stress. The aim of this study was to evaluate the tolerance of cowpea genotypes (Vigna unguiculata L. Walp.) to salt stress at different temperatures. Seeds of the Pujante, Epace 10 and Marataoã genotypes were placed on paper rolls (Germitest®) moistened with different salt concentrations of 0.0 (control), 1.5, 3.0, 4.5 and 6.0 dS m-1, and placed in a germination chamber (BOD) at temperatures of 20, 25, 30 and 35°C. The experiment was conducted in a completely randomised design, in a 3 × 4 × 5 scheme of subdivided plots, with four replications per treatment. The variables under analysis were germination percentage, first germination count, shoot and root length, and total seedling dry weight. At temperatures of 30 and 35°C, increases in the salt concentration were more damaging to germination in the Epace 10 and Pujante genotypes, while for the Marataoã genotype, damage occurred at the temperature of 20°C. At 25°C, germination and vigour in the genotypes were higher, with the Pujante genotype proving to be more tolerant to salt stress, whereas Epace 10 and Marataoã were more tolerant to high temperatures. Germination in the cowpea genotypes was more sensitive to salt stress when subjected to heat stress caused by the low temperature of 20°C or high temperature of 35°C.


2014 ◽  
Vol 1039 ◽  
pp. 107-111
Author(s):  
Yang Chen ◽  
Gui Qin Li ◽  
Bin Ruan ◽  
Xiao Yuan ◽  
Hong Bo Li

The mechanical behavior of plastic material is dramatically sensitive to temperature. An method is proposed to predict the mechanical behavior of plastics for cars, ranging from low-temperature low temperature ≤-40°C to high temperature ≥80°C. It dominates the behavior of plastic material based on improved constitutive model in which the parameters adjusted by a series of tests under different temperatures. The method is validated with test and establishes the basis for research and development of plastic parts for automobile as well.


Weed Science ◽  
1970 ◽  
Vol 18 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Lafayette Thompson ◽  
F. W. Slife ◽  
H. S. Butler

Corn(Zea maysL.) in the two to three-leaf stage grown 18 to 21 days in a growth chamber under cold, wet conditions was injured by postemergence application of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) plus emulsifiable phytobland oil. Injury was most severe when these plants were kept under cold, wet conditions for 48 hr after the herbicidal spray was applied, followed by exposure to high light intensity and high temperature. Under these growth chamber conditions, approximately 50% of the atrazine-treated plants died. Since wet foliage before and after application increased foliar penetration and low temperature decreased the rate of detoxication to peptide conjugates, atrazine accumulated under cold, wet conditions. This accumulation of foliarly-absorbed atrazine and the “weakened” conditions of the plants grown under the stress conditions is believed to be responsible for the injury to corn. Hydroxylation and the dihydroxybenzoxazin-3-one content in the roots were reduced at low temperature, but it is unlikely that this contributed to the death of the corn.


2012 ◽  
Vol 72 (2) ◽  
pp. 343-351 ◽  
Author(s):  
MC. Bittencourt-Oliveira ◽  
B. Buch ◽  
TC. Hereman ◽  
JDT. Arruda-Neto ◽  
AN. Moura ◽  
...  

Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju (Ordem Nostocales) is one of the most troublesome bloom-forming species in Brazil. Understanding the population dynamics of the different morphotypes of C. raciborskii (straight and coiled) could assist in the prediction of favourable conditions for the proliferation of this potentially toxin-producing species. The aim of the present study was to assess the effects of two different light intensities and temperatures on the growth rate and morphology of the trichomes of the straight and coiled morphotypes. For such, two non-toxin producing strains of C. raciborskii were used - one with a coiled trichome (ITEP31) and another with a straight trichome (ITEP28). The strains were cultured in BG-11 medium in a climatic chamber under controlled conditions. Two light intensities (30 and 90 µmol.m-2.s-1 ) were combined at temperatures of 21 and 31 °C and the growth rate and morphological changes were analysed. The morphotypes responded differently to the different temperatures and light intensities. Both strains exhibited faster growth velocities when submitted to higher light intensity and temperature. The lower temperature and higher luminosity hampered the development of both strains. Variations in cellular morphology and an absence of akinetes in both strains were related to the lower temperature (21 °C). The coiled morphotype demonstrated considerable phenotype plasticity, changing the morphology of trichome throughout its growth curve. Although molecular analysis does not sustain the separation of the morphotypes as distinct species, their different eco-physiological responses should be considered further knowledge of extreme importance for the population control of these potentially toxic organisms.


1969 ◽  
Vol 72 (3) ◽  
pp. 423-435 ◽  
Author(s):  
R. Q. Cannell

SUMMARYControlled-environment experiments showed that development of the coleoptile node tiller (T1) was suppressed much more than that of the tiller appearing in the axil of the first true leaf (T2) by high temperature (24/15 °C; 19/10 °C; 10/6 °C), by reduced photoperiod (16 h; 12·5 h) or by low light intensity (1100 ft-c; 1000 ft-c), but minimally in the newest variety, Deba Abed. Unlike previous field experiments, the T1 tiller appeared on more Spratt Archer than Maris Badger plants. Maris Badger plants produced more T1 tillers in a high-low temperature regime (19/10 °C; 10/6 °C) than in continuous low temperature (10/6 °C). In a field experiment T1 tiller number (and yield), but not the number of other major shoots, were severely reduced by late sowing of Spratt Archer, progressively reduced in Maris Badger, but minimally in Deba Abed. This seemed to be associated with higher temperatures at later sowings.


1965 ◽  
Vol 43 (3) ◽  
pp. 345-353 ◽  
Author(s):  
D. J. C. Friend

The number of spikelets on the differentiating inflorescence and the ear at anthesis was highest at high light intensities and at low temperatures. The length of the developing inflorescence and the ear, the height of the main stem, and the total plant dry weight at the time of anthesis were also greatest under these conditions.These results are related to differential effects of temperature and light intensity on the rates and duration of apical elongation, morphological development of the ear, and spikelet formation.


2021 ◽  
Vol 9 (10) ◽  
pp. 2161
Author(s):  
Bowen Huang ◽  
Xiang Zhang ◽  
Chongming Wang ◽  
Changming Bai ◽  
Chen Li ◽  
...  

High temperature is a risk factor for vibriosis outbreaks. Most vibrios are opportunistic pathogens that cause the mortality of aquatic animals at the vibrio optimal growth temperature (~25 °C), whereas a dominant Vibrio kanaloae strain SbA1-1 is isolated from natural diseased ark clams (Scapharca broughtonii) during cold seasons in this study. Consistent symptoms and histopathological features reappeared under an immersion infection with SbA1-1 performed at 15 °C. The pathogenicity difference of SbA1-1 was assessed under different temperatures (15 °C and 25 °C). The cumulative mortality rates of ark clams were significantly higher at the low temperature (15 °C) than at the high temperature (25 °C); up to 98% on 16th day post SbA1-1 infection. While the growth ratio of SbA1-1 was retarded at the low temperature, the hemolytic activity and siderophores productivity of SbA1-1 were increased. This study constitutes the first isolation of V. kanaloae from the natural diseased ark clams (S. broughtonii) in cold seasons and the exposition of the dissimilar pathogenicity of SbA1-1 at a different temperature. All the above indicates that V. kanaloae constitutes a threat to ark clam culture, especially in cold seasons.


Sign in / Sign up

Export Citation Format

Share Document