scholarly journals Reducing Unavoidable Nutrient Losses from Florida's Horticultural Crops

2010 ◽  
Vol 20 (1) ◽  
pp. 52-66 ◽  
Author(s):  
S. Shukla ◽  
B.J. Boman ◽  
R.C. Ebel ◽  
P.D. Roberts ◽  
E.A. Hanlon

Despite efforts to optimize water and nutrient inputs to Florida's vegetable and fruit crops, the sandy soils, shallow water table, and tropical climate of Florida result in nutrient leaching losses that are unavoidable. Water quantity and quality management strategies that can reduce these nutrient losses from Florida's horticultural crops were reviewed and research needs for quantifying their effectiveness were identified. The water quantity management strategies included water table management for irrigation, drainage management, detention of runoff and drainage, and summer flooding. In addition to the expected water quality benefits of these practices, potential effects on crop production and farm economics were also discussed. Watershed-scale adoption of stormwater harvesting has the potential to not only reduce the nutrient loadings but also become a source of additional income for landowners through water trading. The water quality practices included structural and managerial practices (e.g., vegetative filter strips and ditch cleaning). Key research needs for reducing the unavoidable nutrient discharges included the development of a crop-specific drainage management tool; quantification of farm and watershed-scale benefits of stormwater detention and its reuse with regards to nutrient loadings, water supply, crop production, and farm income; enhancement of hydraulic efficiency of detention areas; and effects of summer flooding and ditch maintenance and cleaning on nutrient discharges.

2017 ◽  
Vol 2 ◽  
pp. 31
Author(s):  
Salar Farhangi Abriz

<p>Over dose using of herbicides is one of the major problems in crops and horticulture productions. Human food safety and economical production of agricultural products are the main target of new agronomy and plant scientists. Integrative management is one of the new programs for reducing herbicide doses in agriculture. This program includes many physiological and physicochemical methods for controlling herbicide uses in farms and orchards. This article explain some of these methods such as using surfactants, water quality in spraying, using magnetic fields, controlling the nitrogen content of soil, using a suitable formulation and powerful cultivars and genotypes in agriculture and the effects of this reduction in herbicide doses on plants behavior and weeds controlling. According to this method integrative management can be beneficial in crop production and farmers must be using of this management method in their farms. </p>


2018 ◽  
Vol 61 (1) ◽  
pp. 161-168 ◽  
Author(s):  
Jeffrey S. Strock ◽  
Christopher Hay ◽  
Matthew J. Helmers ◽  
Kelly A. Nelson ◽  
Gary R. Sands ◽  
...  

Abstract. This article introduces a special collection of fourteen articles accepted from among the 140 technical presentations, posters, and meeting papers presented at the 10th International ASABE Drainage Symposium. The symposium continued in the tradition of previous symposia that began in 1965 as a forum for presenting and assessing the progress of drainage research and implementation throughout the world. The articles in this collection address a wide range of topics grouped into five broad categories: (1) crop response, (2) design and management, (3) hydrology and scale, (4) modeling, and (5) water quality. The collection provides valuable information for scientists, engineers, planners, and others working on crop production, water quality, and water quantity issues affected by agricultural drainage. The collection also provides perspectives on the challenges of increasing agricultural production in a changing climate, with ever-greater attention to water quality and quantity concerns that will require integrated technical, economic, and social solutions. Keywords: ASABE Drainage Symposium, crop response, design and management, hydrology and scale, modeling, water quality.


2020 ◽  
Vol 34 (26) ◽  
pp. 5188-5209 ◽  
Author(s):  
Peter V. Caldwell ◽  
Katherine J. Elliott ◽  
Ning Liu ◽  
James M. Vose ◽  
David R. Zietlow ◽  
...  

Author(s):  
J. G. Tundisi ◽  
T. Matsumura-Tundisi ◽  
V. S. Ciminelli ◽  
F. A. Barbosa

Abstract. The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.


2015 ◽  
Vol 25 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Ryan W. McCreery ◽  
Elizabeth A. Walker ◽  
Meredith Spratford

The effectiveness of amplification for infants and children can be mediated by how much the child uses the device. Existing research suggests that establishing hearing aid use can be challenging. A wide range of factors can influence hearing aid use in children, including the child's age, degree of hearing loss, and socioeconomic status. Audiological interventions, including using validated prescriptive approaches and verification, performing on-going training and orientation, and communicating with caregivers about hearing aid use can also increase hearing aid use by infants and children. Case examples are used to highlight the factors that influence hearing aid use. Potential management strategies and future research needs are also discussed.


1991 ◽  
Vol 24 (6) ◽  
pp. 25-33
Author(s):  
A. J. Jakeman ◽  
P. G. Whitehead ◽  
A. Robson ◽  
J. A. Taylor ◽  
J. Bai

The paper illustrates analysis of the assumptions of the statistical component of a hybrid modelling approach for predicting environmental extremes. This shows how to assess the applicability of the approach to water quality problems. The analysis involves data on stream acidity from the Birkenes catchment in Norway. The modelling approach is hybrid in that it uses: (1) a deterministic or process-based description to simulate (non-stationary) long term trend values of environmental variables, and (2) probability distributions which are superimposed on the trend values to characterise the frequency of shorter term concentrations. This permits assessment of management strategies and of sensitivity to climate variables by adjusting the values of major forcing variables in the trend model. Knowledge of the variability about the trend is provided by: (a) identification of an appropriate parametric form of the probability density function (pdf) of the environmental attribute (e.g. stream acidity variables) whose extremes are of interest, and (b) estimation of pdf parameters using the output of the trend model.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 320
Author(s):  
Alexander Nilon ◽  
Karl Robinson ◽  
Hanu R. Pappu ◽  
Neena Mitter

Tomato spotted wilt virus (TSWV) is the type member of the genus Orthotospovirus in the family Tospoviridae and order Bunyavirales. TSWV, transmitted by several species of thrips, causes significant disease losses to agronomic and horticultural crops worldwide, impacting both the yield and quality of the produce. Management strategies include growing virus-resistant cultivars, cultural practices, and managing thrips vectors through pesticide application. However, numerous studies have reported that TSWV isolates can overcome host-plant resistance, while thrips are developing resistance to pesticides that were once effective. RNA interference (RNAi) offers a means of host defence by using double-stranded (ds) RNA to initiate gene silencing against invading viruses. However, adoption of this approach requires production and use of transgenic plants and thus limits the practical application of RNAi against TSWV and other viruses. To fully utilize the potential of RNAi for virus management at the field level, new and novel approaches are needed. In this review, we summarize RNAi and highlight the potential of topical or exogenous application of RNAi triggers for managing TSWV and thrips vectors.


Sign in / Sign up

Export Citation Format

Share Document