scholarly journals Comparative Consumer Perspectives on Eco-friendly and Insect Management Practices on Floriculture Crops

2016 ◽  
Vol 26 (1) ◽  
pp. 46-53 ◽  
Author(s):  
Kristin L. Getter ◽  
Bridget K. Behe ◽  
Heidi Marie Wollaeger

Declining bee populations has garnered media attention, which has pressured plant retailers to ask or demand the reduction or elimination of neonicotinoid insecticide use in greenhouse production. This study investigated consumer perspectives on eco-friendly ornamental plant production practices in combination with a variety of insect management practices. Data from an online study were collected from 1555 Americans in May 2015. Over half (55%), nearly half (48.2%), and more than 30% of the participants felt that “bees are not harmed,” “better for the environment,” or “plants that attract bees,” respectively, was a characteristic of bee-friendly insect management practices. The latter group erroneously confused bee-friendly insect management practices with plants that are a potential food source for bees. When asked to rate various insect management plant production practices on a five-point Likert scale, consumer mean scores were positive (defined here as 3.5 to 5.0) for “plants grown using bee-friendly insect management practices,” “plants grown using insect management strategies that are safe for pollinators,” “plants grown using best insect management practices to protect pollinators,” and “plants grown using insect management practices that leaves no insecticide residue on the plant.” Plant species accounted for 31.6% of the decision to purchase the plant, followed by price (25.1%), insect management strategy (23.3%), and eco-friendly practices (20.1%) that was similar to prior published findings. Analyses showed that plants labeled as “grown using bee-friendly insect management practices” were worth $0.26, $0.26, $0.89, and $1.15 more than plants labeled as “grown in a sustainably produced potting soil/mix,” “grown using recycled/recaptured water,” “grown using protective neonicotinoid insecticides,” and “grown using traditional insect management practices,” respectively. In addition, plants labeled as “grown using best insect management practices to protect pollinators” were worth $0.10, $0.10, $0.73, and $0.99 more than plants labeled as “grown in a sustainably produced potting soil/mix,” “grown using recycled/recaptured water,” “grown using protective neonicotinoid insecticides,” and “grown using traditional insect management practices,” respectively. Thus, selected insect management strategies were valued more, on average, than eco-friendly production practices.

1992 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
George J. Hochmuth

Efficient N management practices usually involve many potential strategies, but always involve choosing the correct amount of N and the coupling of N management to efficient water management. Nitrogen management strategies are integral parts of improved production practices recommended by land-grant universities such as the Institute of Food and Agricultural Sciences, Univ. of Florida. This paper, which draws heavily on research and experience in Florida, outlines the concepts and technologies for managing vegetable N fertilization to minimize negative impacts on the environment.


Author(s):  
Nabil El-Wakeil ◽  
Nawal Gaafar ◽  
Abdellah Abdel-Moniem ◽  
Christa Volkmar

Chamomile Matricaria recutita (L) is an ancient healing plant; it is used for a sore stomach, a mild laxative, anti-inflammatory and a gentle sleep aid. Chamomile plants are infected by many insect pests. The flower heads are infested by chamomile smooth beetle Olibrus aeneus (Fabricius 1792). The dangerous insect is infestation with chamomile stem-weevil Microplontus rugulosus (Autumn 1795). Their infestations lead to a high reduction in chamomile yield. This work aimed to determine the adequate management strategies of Microplontus rugulosus and Olibrus aeneus, especially using entomopathogenic nematodes. Management of chamomile insects was conducted on plants moved from field to greenhouse using entomopathogenic nematodes; while the control plants were sprayed only with water. The efficiency of three types of entomopathogenic nematodes (EPNs) was evaluated; each strain replicated 3 times; each was 50 chamomile plants (totally is 150 for each strain). Three treatment dates were carried out in May, June and July; the first one was mainly for controlling stem weevil, while the other two dates were for smooth beetle. Steinernema carpocapsae had more efficiency than S. feltiae and Heterorhabditis bacteriophora. The lived larvae were higher in the untreated than treated plants. EPNS could be one of the most effective management strategies to control such insects to keep the environment clean and should be one of the suitable control strategies for integrated insect management practices which would be developed with the ecological requirements of insects in different chamomile fields.


Weed Science ◽  
2008 ◽  
Vol 56 (3) ◽  
pp. 477-483 ◽  
Author(s):  
Jim S. Broatch ◽  
Lloyd M. Dosdall ◽  
John T. O'Donovan ◽  
K Neil Harker ◽  
George W. Clayton

Weed management strategies can influence insect infestations in field crops, yet no attempts have been made previously to manipulate weed populations in canola for integrated weed and insect management. Field studies were conducted during 2003 to 2005 at Lacombe and Beaverlodge, Alberta, Canada to manipulate weed and root maggot, Delia spp. (Diptera: Anthomyiidae), interactions in canola. Densities of monocot weeds were varied by altering herbicide applications, with rates ranging from 0 to 100% of the rate recommended. Weed populations declined, and yields were variable with increased herbicide rates. Root maggot damage decreased with increases in monocot weed dry weight for both canola species at both study sites. Results support the hypothesis that heterogenous environments, arising from mixed populations of monocot weeds with canola, minimize opportunities for females of Delia spp. to complete the behavioral sequence required for oviposition, leading to reduced infestation levels in weedy systems. However, effects of dicot weeds on root maggot infestations varied between sites as a result of site-related differences in weed species complexes. When wild mustard was common, crop damage increased, because this weed can serve as an alternate host for root maggots. The study emphasizes the importance of adopting crop management practices that are compatible for both weed and root maggot control.


2005 ◽  
Vol 15 (2) ◽  
pp. 381-385 ◽  
Author(s):  
Donald J. Merhaut ◽  
Dennis Pittenger

A survey of wholesale nurseries in the United States was conducted in 1999, with 169 of the 806 nurseries surveyed responding from the state of California. The survey, consisting of 29 questions related to production practices, products, sales, and marketing, was sent to a random group of nurseries. Based on these results, over 50% of the new nursery businesses in California have been established within the last two decades. While most of the nurseries have computerized business practices, only 21% have implemented the use of computers or other automation in their production practices. Horticulturally, containerized plant production (80% of the industry) is still the primary method of growing and shipping plants in California, and most (90%) of these products are sold within the state. Nevada, Arizona, Oregon, Washington, and Texas are the primary destinations for plant material that is exported out of state. The factors that nursery owners feel influence sales the most include market demand, weather unpredictability, and water supply, while governmental and environmental regulations are perceived to have the least impact. The factors that influence product price include cost of production, market demand, and product uniqueness.


EDIS ◽  
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hayk Khachatryan ◽  
Xuan Wei ◽  
Alicia Rihn

This article summarizes ornamental plant producers’ current production practices with a specific emphasis on their use of neonicotinoid and non-neonicotinoid insecticides. Written by Hayk Khachatryan, Xuan Wei, and Alicia Rihn, and published by the UF/IFAS Food and Resource Economics Department, July 2021.


2013 ◽  
Vol 1 (1) ◽  
pp. 83
Author(s):  
Ozan Büyükyılmaz

The development and expansion of knowledge management as an important management philosophy has a significant impact on human resources management as well as on organization as a whole. In this context, knowledge management processes have been used as a strategic tool within human resources management.Therefore, functions of human resources management must adapt itself to this change. The purpose of this study is to determine the role of human resources management in the management of knowledge and to reveal the effects of knowledge management practices on the functions of human resources byexamining the relationship between human resources and knowledge management. In this context, a theoretical investigation was conducted. It has been determined that significant changes occurred on the functions of human resources management such as selection and recruitment, performance management, remuneration and reward, training and development within the framework of the knowledge management strategies.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 91-99
Author(s):  
R. A. Wagner ◽  
M. G. Heyl

As part of the Sarasota Bay National Estuary Program (NEP) evaluation of environmental problems, modeling tools were used to estimate pollution loadings from diverse sources, including surface runoff, baseflow, wastewater treatment plant discbarges, septic tanks, and direct deposition of rainfall on the bay surface. After assessing the relative impacts of the pollution sources, alternative management strategies were identified and analyzed. These strategies focused primarily on future development, and included structural and nonstructural best management practices (BMPs), as well as a regional wastewater treatment plan. Loading reductions, along with planning-level cost data and estimates of feasibility and other potential benefits, were used to identify the most promising alternatives.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


2021 ◽  
Vol 13 (3) ◽  
pp. 1158
Author(s):  
Cecilia M. Onyango ◽  
Justine M. Nyaga ◽  
Johanna Wetterlind ◽  
Mats Söderström ◽  
Kristin Piikki

Opportunities exist for adoption of precision agriculture technologies in all parts of the world. The form of precision agriculture may vary from region to region depending on technologies available, knowledge levels and mindsets. The current review examined research articles in the English language on precision agriculture practices for increased productivity among smallholder farmers in Sub-Saharan Africa. A total of 7715 articles were retrieved and after screening 128 were reviewed. The results indicate that a number of precision agriculture technologies have been tested under SSA conditions and show promising results. The most promising precision agriculture technologies identified were the use of soil and plant sensors for nutrient and water management, as well as use of satellite imagery, GIS and crop-soil simulation models for site-specific management. These technologies have been shown to be crucial in attainment of appropriate management strategies in terms of efficiency and effectiveness of resource use in SSA. These technologies are important in supporting sustainable agricultural development. Most of these technologies are, however, at the experimental stage, with only South Africa having applied them mainly in large-scale commercial farms. It is concluded that increased precision in input and management practices among SSA smallholder farmers can significantly improve productivity even without extra use of inputs.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


Sign in / Sign up

Export Citation Format

Share Document