scholarly journals Effects of Desiccation and Storage Temperature on Seed Germination in Kapok

2016 ◽  
Vol 26 (1) ◽  
pp. 83-88
Author(s):  
YanLing Zheng ◽  
GaoJuan Zhao ◽  
HuanCheng Ma

Kapok (Bombax ceiba) is a deciduous tree that can grow in the dry-hot valley of southwestern China where its natural regeneration by seedlings is difficult. As mature fruit split open and seeds disperse by wind, it is difficult to collect fully mature seeds. The effects of seed moisture content (MC) and storage temperatures on seed germination of dark-brown seeds collected from split fruit and light-brown seeds collected ≈10–15 days earlier than the time of fruit split were studied to determine the effective germplasm preservation via the seeds. Dark-brown mature seeds could tolerate desiccation to less than 5% MC and could tolerate −20 and −80 °C. Seeds of kapok showed orthodox storage behavior. They can be stored at subzero temperatures with low MC for a long time. For light-brown seeds, germination percentage (GP), germination index (GI), seedling fresh weight (SFW), and vigor index (VI) decreased significantly after seed desiccation. Germination percentage of light-brown seeds with different MC increased to a different extent after being stored at different temperatures for 1 year (76% to 99%), compared with the fresh seeds (73%). Storing fresh seeds at 4 °C was most favorable to keep seed viability and seed vigor of light-brown seeds. Seed collection could be done several days earlier than the time of fruit burst to ensure increased quantity of collected seeds.

2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Chih-Hsin Yeh ◽  
Kai-Yi Chen ◽  
Yung-I. Lee

Abstract Background Vanilla planifolia is an important tropical orchid for production of natural vanilla flavor. Traditionally, V. planifolia is propagated by stem cuttings, which produces identical genotype that are sensitive to virulent pathogens. However, propagation with seed germination of V. planifolia is intricate and unstable because the seed coat is extremely hard with strong hydrophobic nature. A better understanding of seed development, especially the formation of impermeable seed coat would provide insights into seed propagation and conservation of genetic resources of Vanilla. Results We found that soaking mature seeds in 4% sodium hypochlorite solution from 75 to 90 min significantly increased germination. For the culture of immature seeds, the seed collection at 45 days after pollination (DAP) had the highest germination percentage. We then investigated the anatomical features during seed development that associated with the effect of seed pretreatment on raising seed germination percentage. The 45-DAP immature seeds have developed globular embryos and the thickened non-lignified cell wall at the outermost layer of the outer seed coat. Seeds at 60 DAP and subsequent stages germinated poorly. As the seed approached maturity, the cell wall of the outermost layer of the outer seed coat became lignified and finally compressed into a thick envelope at maturity. On toluidine blue O staining, the wall of outer seed coat stained greenish blue, indicating the presence of phenolic compounds. As well, on Nile red staining, a cuticular substance was detected in the surface wall of the embryo proper and the innermost wall of the inner seed coat. Conclusion We report a reliable protocol for seed pretreatment of mature seeds and for immature seeds culture based on a defined time schedule of V. plantifolia seed development. The window for successful germination of culturing immature seed was short. The quick accumulation of lignin, phenolics and/or phytomelanins in the seed coat may seriously inhibit seed germination after 45 DAP. As seeds matured, the thickened and lignified seed coat formed an impermeable envelope surrounding the embryo, which may play an important role in inducing dormancy. Further studies covering different maturity of green capsules are required to understand the optimal seed maturity and germination of seeds.


2021 ◽  
Vol 10 (9) ◽  
pp. e50110917893
Author(s):  
Amanda Domingas Ediodato de Sousa ◽  
Luciana Botezelli ◽  
Patrícia Neves Mendes

High-altitude fields have been subjected to an intense anthropization process. Due to this, studies on germination, seed storage and propagation of species that compose this plant formation become fundamental. Among such species is the Chresta sphaerocephala DC., Asteraceae. The purpose of this work was to study different temperatures for germination and storage of this species. Four germination temperatures (15°C, 20°C, 25°C and 30°C) and two storage temperatures (-5°C and +5°C) were tested. In order to assess seed vigor, the germination speed index (GSI) and average seed germination time were calculated. ANOVA and Tukey's test were performed at a 5% significance level. In addition, a morphological difference was observed in the analyzed Chresta sphaerocephala seeds, with these being classified as C1 (small seeds), C2 (long thin seeds), C3 (thicker seeds) and C4 (dark colored seeds). As for the storage temperature, 5°C was shown to be the best. When correlated with the germination temperature, 20°C resulted in a statistically higher number of germinated seeds.


HortScience ◽  
2013 ◽  
Vol 48 (9) ◽  
pp. 1197-1199 ◽  
Author(s):  
Vladimir Orbović ◽  
Manjul Dutt ◽  
Jude W. Grosser

The effects of fruit age on the seed quality and germination percentage of ‘Duncan’ and ‘Flame’ grapefruit and ‘Hamlin’ sweet orange were investigated. Our results suggested that seed germination varied from 98% to 100% for the two grapefruit cultivars and 85% to 100% for ‘Hamlin’ regardless of time of harvest. Within the first 5 months of the harvest season, chilling of ‘Duncan’ and ‘Hamlin’ seeds at 4 °C for 7 days after fruit sampling resulted in a lower germination percentage only with the ‘Hamlin’ seeds. Seed moisture content of all three cultivars varied slightly through the season and remained steady at 60% and 70% for batches of fresh seeds stored at room temperature or at 4 °C. Our results suggest that high seed viability and germination percentage can allow the use of these seeds for experimentation regardless of the time the fruit were picked during the harvest season.


2019 ◽  
Vol 42 (3) ◽  
pp. 239-242
Author(s):  
Bhavana Joshi ◽  
◽  
Giriraj Singh Panwar ◽  
Kumar Ambrish ◽  
◽  
...  

Pittosporum eriocarpum Banks. ex Gaertn. (Pittosporaceae) is an endemic and threatened species of the North-West Himalaya and locally known as Agni. In this study the seed viability, seed germination and storage behavior of seeds was studied stored at different temperature. Maximum viability was reported in fresh seeds (98.21%) while the maximum germination percentage (87.11%) was observed in 6-months old seeds stored in refrigerator (polythene). Application of Gibberellic acid has improved the seed germination (54.13%) and to overcome the morpho-physiological dormancy of the seed to an extent.


2020 ◽  
Author(s):  
Peter Murithi Angaine ◽  
Stephen Muriithi Ndungú ◽  
Alice Adongo Onyango ◽  
Jesse Omondi Owino

Abstract Background: Globally, forestry faces challenges in the availability of seeds due to limited knowledge on seed handling of various species. Forestry seeds are constantly being reviewed and classified as either recalcitrant, intermediate, or orthodox based on their storage behavior. It is essential to understand the tree seed storage behavior to maintain seed viability and thus minimize seed losses. There is scanty literature combining factors of seed moisture content (6%, 9%, 12%, 15%, and 20%), seed storage temperature (20oC, 5oC and -20oC), seed storage duration (1, 4, 9 and 12 months), and germination in different sites with varying environmental variables. Ehretia cymosa is important in the Afromontane forestry landscape as a medicinal, rehabilitation, and conservation species. This study conducted desiccation and storage studies and their influence on the viability of E. cymosa seeds. The study sought to determine the optimum conditions for the storage of Ehretia cymosa that maintains viability. Results: This study observed that E. cymosa dried to seed moisture content of 6%, stored for 12 months at 20oC and sown in the laboratory had the highest germination performance (27.6 ± 3.18%) (p<0.05). Conclusion: This confirms that E.cymosa seeds exhibit orthodox storage behavior. The authors recommend longer storage studies (>12months) to determine the actual longevity of the seeds of this species. The significance of these results would be useful for foresters and farmers that would need to use this species for various purposes.


2010 ◽  
Vol 58 (4) ◽  
pp. 294 ◽  
Author(s):  
Ching-Te Chien ◽  
Jerry M. Baskin ◽  
Carol C. Baskin ◽  
Shun-Ying Chen

Daphniphyllum glaucescens Blume ssp. oldhamii (Hemsl.) Huang is an important subtropical evergreen tree in Taiwan. Seeds of D. glaucescens have non-deep, simple, epicotyl morphophysiological dormancy, and a minimum of 10–12 weeks is required for the first step of seedling production, i.e. hypocotyl emergence. It is not known how to decrease the time for seedling production and how to store seeds for retention of viability. We determined the effects of (i) gibberellic acid and cold-stratification on germination (hypocotyl emergence) and (ii) storage temperature and seed moisture content (MC) on germinability. Exogenous application of GA3 and of GA4 promoted germination and increased the germination rate. Moist cold-stratification at 5°C also promoted germination; the longer the stratification period, the faster the rate of germination. More than 70% of seeds (fresh seeds, MC = 37.6%) dried to an MC of 6.4%, 8.5% and 25.5% (fresh weight basis) retained germinability after a 1-month storage at 5°C, whereas germination percentage decreased to 0–2% after a 12-month storage at the same temperature. Germination percentage of seeds dried to the same MC and stored at 15°C decreased to 0% after 8 months, whereas seeds stored at −20°C did not germinate even after just 1 month of storage. The present evidence suggests that seeds of D. glaucescens have intermediate rather than orthodox or recalcitrant storage behaviour.


2017 ◽  
Vol 10 (3) ◽  
pp. 262-270 ◽  
Author(s):  
Mélissa De Wilde ◽  
Elise Buisson ◽  
Nicole Yavercovski ◽  
Loïc Willm ◽  
Livia Bieder ◽  
...  

Successful invasive plant eradication is rare, because the methods used target the adult stage, not taking into account the development capacity of a large seedbank. Heating by microwave was considered, because it offers a means to quickly reach the temperature required for loss of seed viability and inhibition of germination. Previous results were not encouraging, because homogeneous and deep-wave penetration was not achieved, and the various parameters that can affect treatment effectiveness were incompletely addressed. This study aimed to determine, under experimental conditions, the best microwave treatment to inhibit invasive species seed germination in terms of power (2, 4, 6 kW) and duration (2, 4, 8 min) of treatments and depending on soil moisture (10%, 13%, 20%, 30%) and seed burial depth (2, 12 cm). Three invasive species were tested: Bohemian knotweed, giant goldenrod, and jimsonweed. The most effective treatments required relatively high power and duration (2kW8min, 4kW4min, 6kW2min, and 6kW4min; 4kW8min and 6kW8min were not tested for technical reasons), and their effectiveness diminished with increasing soil moisture with germination percentage between 0% and 2% for the lowest soil moisture, 0% and 56% for intermediate soil moisture, and 27% and 68% in control treatments. For the highest soil moisture, only 2kW8min and 4kW4min reduced germination percentage between 2% and 19%. Occasionally, germination of seeds located at the 12-cm depth was more strongly affected. Giant goldenrod seeds were the most sensitive, probably due to their small size. Results are promising and justify further experiments before developing a field microwave device to treat large volumes of soil infested by invasive seed efficiently and with reasonable energy requirements. Other types of soil, in terms of texture and organic matter content, should be tested in future experiments, because these factors influence soil water content and, consequently, microwave heating.


2021 ◽  
Author(s):  
Chih-Hsin Yeh ◽  
Kai-Yi Chen ◽  
Yung-I Lee

Abstract Background: Vanilla planifolia is an important tropical orchid for production of natural vanilla flavor. Traditionally, V. planifolia is propagated by stem cuttings, which produces identical genotype that are sensitive to virulent pathogens. However, sexual propagation with seed germination of V. planifolia is intricate and unstable because of the extremely hard seed coat. A better understanding of seed development, especially the formation of impermeable seed coat would provide insights into seed propagation and conservation of genetic resources of Vanilla.Results: We found that soaking mature seeds in 4 % sodium hypochlorite solution from 75 to 90 min significantly increased germination and that immature seeds collected at 45 days after pollination (DAP) had the highest germination percentage. We then investigated the anatomical features during seed development that associated with the effect of seed pretreatment on raising seed germination percentage. The 45-DAP immature seeds have developed globular embryos and the thickened non-lignified cell wall at the outermost layer of the outer seed coat. After 60 DAP, the cell wall of the outermost layer of the outer seed coat became lignified and finally compressed into a thick envelope. These features matches the significant decreases of immature seed germination percentage after 60 DAP. Conclusion: We report a reliable protocol for seed pretreatment of mature seeds and for immature seeds culture based on a defined time schedule of V. plantifolia seed development. The thickened and lignified seed coat formed an impermeable envelope surrounding the embryo, and might play an important role in seed dormancy of V. plantifolia.


Author(s):  
S. N. Mahadi ◽  
F. Zawawi ◽  
R. Nulit ◽  
M. H. Ibrahim ◽  
N. I. Ab. Ghani

Aim: This study was conducted to develop liquid enhancer containing KCl, TU, GA, and SA for germination of drought-stressed Oryza sativa subsp. indica cv. MR284 seed. Study Design: All experiments were conducted in a completely randomized design. Two steps were involved in the development process which are to select an ideal concentration for each KCl, TU, GA, and SA, and to find an ideal combination of chemicals from the selection of ideal concentrations acquired in step 1 to form liquid enhancer. There were 20 treatments for step 1 and 9 treatments for step 2. All of these treatments with 6 replicates. Place and Duration of Study: Department of Biology, Faculty of Science, University Putra Malaysia, between June 2018 and December 2018. Methodology: The sterilized rice seed cv. MR284 was stressed in the -1.2 Mpa PEG 6000 solution for three days and germinated in the KCl, TU, GA, and SA solution in a series of concentration for 10 days, in a controlled room. Seed germination was observed daily. Results: In the first step, drought-stressed rice seed showed the best germination performance in the 30 mM of KCl, 2.0 mM of TU, 0.24 mM GA, and 0.5 mM SA. Meanwhile, in the second step, the drought-stressed rice seed showed the best germination performance in the combination of 30 mM KCl + 2.0 mM TU + 0.24 mM GA + 0.5 mM SA. The best germination performance was evaluated by the highest germination percentage (%), germination index, seed vigor, leaf length, root length and biomass. Conclusion: Therefore, the combination treatments of 30 mM KCl + 2.0 mM TU + 0.5 mM SA was found to be the most effective and simplest liquid enhancer formula that has an ability to enhance seed germination of drought-stressed rice cv. MR284 seed.


Author(s):  
Febiasasti Trias Nugraheni ◽  
Erma Prihastanti ◽  
Endah Dwi Hastuti

Garlic (Allium sativum L.) is an agricultural commodity which is widely consumed by the community. The obstacle experienced in cultivation is that a relatively long dormancy period of about 6-7 months. The dormancy of garlic seeds occurs because the embryo has not yet been fully formed, and the growth hormone and inhibitory hormone are not balanced. The methods used to break dormancy and accelerate germination are by using corona incandescent plasma radiation and storage temperature. The research utilized factorial Completely Randomized Design (CRD), consisting of six treatments with five replications. The first factor was the corona incandescent plasma radiation carried out on the garlic seeds ‘Lumbu Kuning’ variety with time duration of 0, 15, and 30 minutes. The second factor was storage temperature comprising of room temperature and cold temperature of 7oC stored for 30 days. Viability parameters observed are germination percentage dan the length of sprouts. The data were analyzed by using ANOVA followed by the DMRT test at the 95% confidence level. The results showed that corona incandescent plasma radiation influenced the germination percentage using plasma radiation for 15- 30 minutes.


Sign in / Sign up

Export Citation Format

Share Document