scholarly journals Effect of Different Commercial Substrates on Growth of Petunia Transplants

2016 ◽  
Vol 26 (4) ◽  
pp. 507-513
Author(s):  
Yuqi Li ◽  
Neil S. Mattson

The objective of this study was to evaluate the growth and flowering of petunia (Petunia ×hybrida) transplants in response to seven commercial substrates with two water sources (fertigation and clear water irrigation). Seven commercial substrates used were Sunshine #1 Natural & Organic (SS), Metro-Mix 360 (MM), AgriTech (AT), Cornell Peat-Lite Mix B (CB), Jeff’s Organic (JO), LM-18, and LM-111. The experiment was a completely randomized 2 × 7 factorial design with six single-pot replications per treatment. With fertigation, substrate electrical conductivity (EC) decreased over time to 38 days after transplanting (DAT), and then did not further change. The AT substrate EC value was greater than others during the first 38 DAT. With clear water irrigation, substrate EC decreased over time to 31 DAT, and then did not further change. The AT substrate EC value was greater than other substrates during the entire petunia growth period. With fertigation, all substrate pH values were between 6.5 and 7.5 except AT and CB. The AT substrate had the greatest pH ranging from 7.5 to 8.0 during the petunia growth period. The CB substrate exhibited the lowest pH, which was between 5.8 and 6.3. Clear water irrigation had greater substrate pH values than fertigation. There was a substrate and water interaction for calcium (Ca), potassium (K), ammonium-nitrogen (NH4+-N), nitrate-nitrogen (NO3−-N), and sodium (Na) concentrations in substrate leachate. At 52 DAT, the shoot dry weight (DW), root index (RI), and flower number of petunia grown in AT substrate were greatest among all the substrates, but chlorophyll index (SPAD) was the lowest under either the fertigation or clear water irrigation treatments. The DW and RI of petunia grown in AT substrate were greater when fertigation was used than clear water irrigation, but the water source had no effect on flower number. For SS, MM, CB, JO, LM-18, and LM-111 substrates, fertigation increased petunia DW, RI, and flower number as compared with clear water irrigation, but not SPAD readings.

1994 ◽  
Vol 74 (4) ◽  
pp. 693-697 ◽  
Author(s):  
J. T. O'Donovan ◽  
G. M. Jeffers ◽  
M. P. Sharma ◽  
D. Maurice

A chickweed population (R) from a farm near Stony Plain, Alberta, was more resistant to chlorsulfuron than a population (S) collected near Vegreville, Alberta. In greenhouse experiments, the S population was controlled completely by chlorsulfuron applied at 5 g ha−1, whereas 22 g ha−1 was required to reduce dry weight of the R population by 50%. Experiments conducted in a germinator indicated that percentage germination of the R population was higher than that of the S population up to ~ 60 h. Growth analyses in the greenhouse indicated that leaf number, leaf area, shoot dry weight, days to flowering, flower number, seed weight and relative yields differed little between the two populations. In field experiments, control of the R population was poor with the sulfonylurea herbicides, chlorsulfuron, metsulfuron methyl, triasulfuron, amidosulfuron and thifensulfuron. Good to excellent control was obtained with cyanazine/MCPA, linuron, metribuzin, mecoprop, bentazon, metribuzin + MCPA, linuron + MCPA, and mecoprop + bentazon. Key words: Sulfonylurea herbicides, chlorsulfuron, herbicide resistance, relative competitiveness


HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1452-1457 ◽  
Author(s):  
Ryan W. Dickson ◽  
Paul R. Fisher ◽  
Sonali R. Padhye ◽  
William R. Argo

Floriculture crop species that are inefficient at iron uptake are susceptible to developing iron deficiency symptoms in container production at high substrate pH. The objective of this study was to compare genotypes of iron-inefficient calibrachoa (Calibrachoa ×hybrid Cerv.) in terms of their susceptibility to showing iron deficiency symptoms when grown at high vs. low substrate pH. In a greenhouse factorial experiment, 24 genotypes of calibrachoa were grown in peat:perlite substrate at low pH (5.4) and high pH (7.1). Shoot dry weight, leaf SPAD chlorophyll index, flower index value, and shoot iron concentration were measured after 13 weeks at each substrate pH level. Of the 24 genotypes, analysis of variance (ANOVA) found that 19 genotypes had lower SPAD and 18 genotypes had reduced shoot dry weight at high substrate pH compared with SPAD and dry weight at low substrate pH. High substrate pH had less effect on flower index and shoot iron concentration than the pH effect on SPAD or shoot dry weight. No visual symptoms of iron deficiency were observed at low substrate pH. Genotypes were separated into three groups using k-means cluster analysis, based on the four measured variables (SPAD, dry weight, flower index, and iron concentration in shoot tissue). These four variables were each expressed as the percent reduction in measured responses at high vs. low substrate pH. Greater percent reduction values indicated increased sensitivity of genotypes to high substrate pH. The three clusters, which about represented high, medium, or low sensitivity to high substrate pH, averaged 59.7%, 42.8%, and 25.2% reduction in SPAD, 47.7%, 51.0%, and 39.5% reduction in shoot dry weight, and 32.2%, 9.2%, and 27.7% reduction in shoot iron, respectively. Flowering was not different between clusters when tested with ANOVA. The least pH-sensitive cluster included all four genotypes in the breeding series ‘Calipetite’. ‘Calipetite’ also had low shoot dry weight at low substrate pH, indicating low overall vigor. There were no differences between clusters in terms of their effect on substrate pH, which is one potential plant iron-efficiency mechanism in response to low iron availability. This experiment demonstrated an experimental and statistical approach for plant breeders to test sensitivity to substrate pH for iron-inefficient floriculture species.


HortScience ◽  
2014 ◽  
Vol 49 (8) ◽  
pp. 1061-1066 ◽  
Author(s):  
Paul R. Fisher ◽  
William R. Argo ◽  
John A. Biernbaum

Two experiments were run to validate a “Nitrogen Calcium Carbonate Equivalence (CCE)” model that predicts potential fertilizer basicity or acidity based on nitrogen (N) form and concentration for floriculture crops grown with water-soluble fertilizer in containers with minimal leaching. In one experiment, nine bedding plant species were grown for 28 days in a peat-based substrate using one of three nutrient solutions (FS) composed of three commercially available water-soluble fertilizers that varied in ammonium to nitrate (NH4+:NO3–) ratio (40:60, 25:75, or 4:96) mixed with well water with 130 mg·L−1 calcium carbonate (CaCO3) alkalinity. Both the ammonium-nitrogen (NH4-N) content of the FS and plant species affected substrate pH. Predicted acidity or basicity of the FS for Impatiens walleriana Hook.f. (impatiens), Petunia ×hybrida E. Vilm. (petunia), and Pelargonium hortorum L.H. Bailey (pelargonium) from the Nitrogen CCE model was similar to observed pH change with an adjusted R2 of 0.849. In a second experiment, water alkalinity (0 or 135.5 mg·L−1 CaCO3), NH4+:NO3– ratio (75:25 or 3:97), and N concentration (50, 100, or 200 mg·L−1 N) in the FS were varied with impatiens. As predicted by the N CCE model, substrate pH decreased as NH4+ concentration increased and alkalinity decreased with an adjusted R2 of 0.763. Results provide confidence in the N CCE model as a tool for fertilizer selection to maintain stable substrate pH over time. The limited scope of these experiments emphasizes the need for more research on plant species effects on substrate pH and interactions with other factors such as residual limestone and substrate components to predict pH dynamics of containerized plants over time.


HortScience ◽  
2013 ◽  
Vol 48 (4) ◽  
pp. 448-452 ◽  
Author(s):  
Youbin Zheng ◽  
Mary Jane Clark

To determine the optimal growing substrate pH values for Sedum plants, Sedum album, Sedum reflexum ‘Blue Spruce’, Sedum spurium ‘Dragon’s Blood’, Sedum hybridum ‘Immergrunchen’, and Sedum sexangulare were grown in containers using peatmoss and perlite-based substrates at five target pH levels (i.e., 4.5, 5.5, 6.5, 7.5, and 8.5). Optimal pH levels, calculated from dry weight regression models, were 6.32, 6.43, 5.71, 6.25, and 5.91 for S. album, S. reflexum, S. spurium, S. hybridum, and S. sexangulare, respectively, and 5.95 overall. Sedum spurium dry weight varied the most among pH treatments (i.e., 9.5 times greater at pH 6.3 vs. 8.3), whereas S. reflexum varied the least (i.e., 1.3 times greater at pH 6.3 vs. 4.4), indicating species-specific growth responses to growing substrate pH. These findings identified a narrow range of optimal growing substrate pH levels within a wider pH range tolerated by five Sedum spp. Therefore, by adjusting substrate pH to optimal levels, Sedum growth can be maximized.


HortScience ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 603-608 ◽  
Author(s):  
James E. Altland ◽  
James C. Locke ◽  
Wendy L. Zellner ◽  
Jennifer K. Boldt

Dolomitic lime (DL) is the primary liming agent used for increasing pH in peatmoss-based substrates. Steel slag (SS) is a byproduct of the steel manufacturing industry that has been used to elevate field soil pH. The objective of this research was to determine the pH response of a peatmoss-based greenhouse substrate to varying rates of DL or SS. Two experiments were conducted with an 85 peatmoss : 15 perlite substrate. In the first experiment, the substrate was amended with 0, 2.4, 4.8, or 7.1 kg·m−3 of either DL or SS. Half of the containers remained fallow and the other half were potted with a single sunflower (Helianthus annuus L. ‘Pacino Gold’). In the second experiment, fallow containers were only used with the substrate amended with 0, 2.4, 4.8, 9.5, or 14.2 kg·m−3 DL or SS. Sunflower were measured for relative foliar chlorophyll content, shoot mass, root ratings, and foliar nutrient concentrations. Substrate electrical conductivity (EC) and pH were measured weekly using the pour-through procedure. All sunflower plants grew vigorously, although nonamended controls had less shoot dry weight than those amended with DL or SS. There were minor differences in foliar concentration of N, Ca, Mg, and Mn; however, these differences did not adversely affect plant growth. Summarizing across both experiments, EC was affected by treatment and time, although all substrates had EC readings within the range recommended for floriculture crop production (1.0–4.6 mS⋅cm−1). Substrate pH differed slightly in Expt. 1 between fallow and planted containers. Substrate pH increased exponentially with increasing rates of either DL or SS. Maximum pH in fallow DL and SS amended substrates was 6.57 and 6.93, respectively, in Expt. 1 and 6.85 and 7.67, respectively, in Expt. 2. The SS used in this experiment resulted in a greater pH response than DL with higher application rates. SS is a viable material for raising pH of soilless substrates.


HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 856-864 ◽  
Author(s):  
Yanjun Guo ◽  
Terri Starman ◽  
Charles Hall

This study analyzed the effects of two ranges of drying down of substrate moisture content (SMC) before re-watering on plant growth and development, postproduction quality, and economic value of bedding plants grown in 1.67-L containers during greenhouse production. The two SMC treatments were wide-range (WR) SMC (WR-SMC) for dry-down from container capacity (CC) of 54% SMC dried down to 20% SMC or narrow-range (NR) SMC (NR-SMC) for dry-down from CC of 54% SMC dried down to 40% SMC. Six bedding plant cultivars were used [Solenostemon scutellarioides ‘French Quarter’ (coleus); Petunia ×hybrida ‘Colorworks Pink Radiance’ (petunia); Lantana camara ‘Lucky Flame’ (lantana); Impatiens ×hybrida ‘Sunpatiens Compact Hot Coral’ (SCC); ‘Sunpatiens Spreading Lavender’ (SSL) (impatiens); and Salvia splendens ‘Red Hot Sally II’ (salvia)]. Shoot dry weight was reduced with WR-SMC on petunia, lantana, impatiens SCC, and salvia at the end of production. With WR-SMC, the petunia and impatiens SCC root ball coverage percentages were greater on the bottom of the container, whereas those of impatiens SSL and salvia were reduced. The WR-SMC increased petunia postproduction quality by increasing the flower number. Lantana and impatiens SCC inflorescence/flower and/or bud number were reduced with WR-SMC. The impatiens SSL flower number was unaffected by SMC treatment. Salvia grown with WR-SMC had increased postproduction quality. WR-SMC reduced postproduction water potential in petunia, lantana, and coleus, suggesting that plants with WR-SMC during production were acclimated to reduced irrigation administered during postproduction. WR-SMC saved labor due to less frequent watering and overhead-associated costs due to reduced bench space, with the exception of coleus and impatiens SSL, which used the same bench space as NR-SMC. Considering production and/or postproduction quality, using WR-SMC during greenhouse production is beneficial as an irrigation method for coleus, petunia, impatiens SSL, and salvia, but not for impatiens SCC or lantana grown in 1.67-L containers.


2019 ◽  
Vol 29 (6) ◽  
pp. 880-888 ◽  
Author(s):  
Elisa Solis-Toapanta ◽  
Celina Gómez

In the quest to identify minimum daily light integrals (DLIs) that can sustain indoor gardening, we evaluated DLIs less than the recommended ranges for commercial production of basil (Ocimum basilicum). Experiments were conducted for 8 weeks to evaluate the effect of providing a constant vs. an increasing DLI over time (DLIInc) on growth and photosynthetic capacity of green (‘Genovese Compact’) and purple (‘Red Rubin’) basil grown hydroponically under a constant ambient temperature of 21 °C. Plants were grown under a 14 h·d–1 photoperiod and were subjected to the following DLI treatments: 4 (DLI4), 6 (DLI6), 8 (DLI8), or 10 (DLI10) mol·m–2·d‒1 (80, 119, 159, and 197 µmol·m‒2·s‒1, respectively); DLIInc was used as a fifth treatment and was achieved by transitioning hydroponic systems systematically to treatments with greater DLIs every 2 weeks. In general, regardless of cultivar, leaf area, leaf number, and overall growth [shoot fresh weight (SFW) and shoot dry weight (SDW)] were similar for plants grown under DLIInc to DLI4 and DLI6 during weeks 2, 4, and 6. However, plants grown under DLIInc produced the same leaf area as those grown under DLI10 at week 8. Nonetheless, across weeks, growth was significantly less under DLIInc compared with DLI10, but similar to that produced by DLI8 at week 8. Photosynthetic responses were significant only at week 8, for which leaves of plants grown under DLI8, DLI10, and DLIInc had 15% to 25% greater maximum gross carbon dioxide (CO2) assimilation (Amax) than plants grown under DLI4. The light saturation point of photosynthesis was unaffected by DLI, but showed a general increasing trend with greater DLIs. Overall, our results suggest that providing a constantly high DLI results in greater growth and yield than increasing the DLI over time. In addition, we found that changes in Amax and the light saturation point are not good indicators of the capacity of whole plants to make use of the available light for photosynthesis and growth. Instead, morphological and developmental traits regulated by DLI during the initial stages of production are most likely responsible for the growth responses measured in our study.


1992 ◽  
Vol 117 (2) ◽  
pp. 209-215 ◽  
Author(s):  
David R. Dreesen ◽  
Robert W. Langhans

The objective of this study was to determine the dry weight, height, and leaf area growth responses of impatiens (Impatiens walerana Hook. f.) plug seedlings to air temperatures ranging from 18 to 29C. The conditions maintained in the controlled-environment growth rooms (CEGR) were ambient C02 levels, 24-h lighting, and photosynthetic photon flux (PPF) ranging from ≈215; to 335 μmol·m-2·s-1. Mean daily temperatures of the plug medium ranged from 19.6 to 27.7C. At the higher PPF level, shoot dry weight decreased at plug medium temperatures (PMT) > 25C; at lower PPF levels (<300 μmol·m-2·s-1), shoot dry weight continued to increase with PMT > 25C. The mean relative growth rate (MRGR) of shoot dry weight was positively correlated with PMT during the initial growth period (up to 14 days from sowing) and was negatively correlated thereafter. The maximum MRGR was predicted to occur at 11.7 days from sowing for a PMT of 19.6C, at 10.8 days for a PMT of 21.6C, and at 9.7 days for a PMT of 23.6C. Linear regression coefficients of shoot height as a function of PMT were substantially higher for seedlings grown at lower PPF than those for seedlings from the highest PPF level. Seedling leaf area consistently increased with increasing temperature. Net assimilation rate (NAR) decreased with increasing seedling age NAR increased with increasing PPF. A decrease in NAR was apparent at 29C relative to values at the lower temperatures. Leaf area ratio (LAR) declined with increasing seedling age and PPF; a quadratic relationship of LAR as a function of PMT indicates a minimum LAR at 22.5C. The seedlings grown at 29C were excessively tall, had thin succulent leaves, and were judged unacceptable for shipping and transplanting. Maximum quality indices (i.e., dry weight per height) were found at PMT of 24.3 to 25.OC for 10- to 14-day-old seedlings and at PMT of 23.0 to 24.OC for 16- to 20-day-old seedlings.


Weed Science ◽  
1993 ◽  
Vol 41 (1) ◽  
pp. 34-37 ◽  
Author(s):  
Robert C. Bozsa ◽  
Lawrence R. Oliver

Field experiments were conducted in 1986 and 1987 to determine the effects of shoot and root interference of common cocklebur and soybean. Plants were grown in porous membrane envelopes. Common cocklebur plants had a longer vegetative growth period than soybean and were twice as tall as soybean at maturity. Soybean root and shoot dry weight and seed yield were reduced by shoot and whole plant (root and shoot) interference of common cocklebur, with whole plant interference giving the greatest reduction. Common cocklebur growth was affected little by soybean interference. Common cocklebur shoot interference alone reduced total soybean seed weight by 48%, the amount caused by common cocklebur whole plant interference.


2011 ◽  
Vol 29 (3) ◽  
pp. 152-161
Author(s):  
Anna-Marie Murphy ◽  
Charles H. Gilliam ◽  
Glenn B. Fain ◽  
H. Allen Torbert ◽  
Thomas V. Gallagher ◽  
...  

Abstract Peat and perlite have served as industry standards in greenhouse substrates for over 50 years. The continued availability of peat, paralleled with its inert characteristics, as well as its ability to stay generally pathogen-free have all contributed to its success in the horticulture industry. Expanded perlite has long been used as an amendment in container mediums to provide air space to container substrates without adding to bulk density or affecting substrate pH and EC. However, due to increased restrictions on the harvesting of peat, as well as fluctuations in fuel prices necessary for shipping, the future availability of peat is a largely unknown factor in greenhouse production. Additionally, growers consider perlite to be a general nuisance due to the lung and eye irritation problems. Because of these problems, researchers have focused on identifying and evaluating possible alternatives to standard substrates. These studies evaluated three possible substrate alternatives for use in greenhouse production, including fresh sweetgum (SG), hickory (H), and eastern redcedar (RC), in addition to WholeTree (WT) substrate. Three greenhouse annual crops (petunia, impatiens, and vinca) were planted in varying ratios of these species mixed with peat. Plants grown with SG and H as amendments did not perform as well as a traditional peat:perlite mix with respect to flower number, growth indices, and plant dry weight. However, plants grown in RC tended to be equivalent to those grown in a traditional mix. Data showed that greenhouse producers could amend their standard greenhouse substrate with up to 50% eastern redcedar with little to no differences in plant growth.


Sign in / Sign up

Export Citation Format

Share Document