scholarly journals Apparent Recovery and Efficiency of Nitrogen Fertilization in Tomato Grown on Sandy Soils

2020 ◽  
Vol 30 (2) ◽  
pp. 204-211
Author(s):  
Laura Jalpa ◽  
Rao S. Mylavarapu ◽  
George J. Hochmuth ◽  
Alan L. Wright ◽  
Edzard van Santen

Use efficiency of applied nitrogen (N) is estimated typically to be <50% in most crops. In sandy soils and warmer climates particularly, leaching and volatilization may be primary pathways for environmental loss of applied N. To determine the effect of N fertilization rate on the N use efficiency (NUE) and apparent recovery of N fertilizer (APR), a replicated field study with ‘BHN 602’ tomato (Solanum lycopersicum) grown in sandy soils under a fertigated plastic-mulched bed system was conducted using ammonium nitrate as the N source at four different rates (0, 150, 200, and 250 lb/acre). Spring tomato was followed by fall tomato in the same field, a typical cropping sequence in north Florida. Fertigation of N fertilizer was applied weekly in 13 equal doses for both seasons. The highest NUE was 12.05% (spring) and 32.38% (fall), and the highest APR was 6.11% (spring) for the lowest rate of N applied (150 lb/acre). In the fall, APR was unaffected by fertilizer N rates and ranged from 12.88% to 19.39%. Nitrogen accumulation in tomato plants were similar among the three N fertilizer rates applied (150, 200, and 250 lb/acre), though compared with no N fertilizer application, significant increases occurred. Whole plant N accumulation, NUE, and APR declined or remained similar when N rates increased above 150 lb/acre. Additionally, a regression analysis and derivative of the quadratic fresh yield data showed that yields were maximized at 162 and 233 lb/acre N in the spring and fall seasons, respectively.

2013 ◽  
Vol 93 (6) ◽  
pp. 1073-1081 ◽  
Author(s):  
E. N. Johnson ◽  
S. S. Malhi ◽  
L. M. Hall ◽  
S. Phelps

Johnson, E. N., Malhi, S. S., Hall, L. M. and Phelps, S. 2013. Effects of nitrogen fertilizer application on seed yield, N uptake, N use efficiency, and seed quality of Brassica carinata . Can. J. Plant Sci. 93: 1073–1081. Ethiopian mustard (Brassica carinata A. Braun) is a relatively new crop in western Canada and research information on its response to N fertilizer is lacking. Two field experiments (exp. 1 at 3 site-years and exp. 2 at 4 site-years) were conducted from 2008 to 2010 in Saskatchewan and Alberta, Canada, to determine effect of N fertilizer application on Brassica carinata plant density, seed and straw yield, N uptake in seed and straw, N use efficiency (NUE), N fertilizer use efficiency (NFUE) and seed quality. N rates applied were 0 to 160 kg N ha−1 and 0 to 200 kg N ha−1 in exps. 1 and 2, respectively. Plant density was not affected by increasing N rate at 5 site-years but declined with high rates of N application at 2 site-years. Seed yield responded to applied N in 6 of 7 site-years, with the non-responsive site having a high total N uptake at the 0 kg N ha−1 rate (high Nt value). There were no sites where seed yields were maximized with the N rates applied. Response trends of straw yield and N uptake were similar to that of seed yield at the corresponding site-years. NUE and NFUE generally declined as N rate increased. Protein concentration in seed generally increased and oil concentration in seed decreased with increasing N rates. In conclusion, the responses of seed yield, total N uptake, NUE, and NFUE to applied N was similar to those reported in other Brassica species with the exception that a rate was not identified in which Brassica carinata yields were maximized.


1983 ◽  
Vol 1 (2) ◽  
pp. 46-48
Author(s):  
Robert D. Wright ◽  
Frank A. Blazich

Rooted cuttings of Ilex crenata Thunb. ‘Helleri’ were grown at 3 day/night temperature regimes 18°/14°, 14°/10° and 10°/6°C (64°/57°, 57°/50° and 50°/43°F) and 3 N rates, 10, 20, 80 ppm in a factorial arrangement. Total plant N increased over time at progressively higher rates as both temperature and N rate increased. Nitrogen rate had a greater influence on N accumulation than temperature and based upon the increase in percent N at the various N rates, a recommendation for timing fall fertilizer application is made.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Jing Niu ◽  
Huiping Gui ◽  
Asif Iqbal ◽  
Hengheng Zhang ◽  
Qiang Dong ◽  
...  

Nitrogen (N) fertilizer plays a vital role in increasing cotton yield, but its excessive application leads to lower yield, lower nitrogen use efficiency (NUE), and environmental pollution. The main objective of this study was to find an effective method to enhance the NUE in cotton production. A two-year field experiment was conducted by using a split plot design with N rates (N0, 0 kg N ha−1; N1, 112.5 kg N ha−1; N2, 225 kg N ha−1, N3, 337.5 kg N ha−1), and cotton cultivars (CRI 69; ZZM 1017; ZZM GD89 and XLZ 30) to evaluate both their individual effect and their interactions on cotton yield and NUE. The results showed that the biomass and N accumulation of four cultivars increased with an increase in N rate, whereas the NUE decreased. Cotton yield increased first and then decreased for CRI 69 and ZZM 1017, while kept increasing from N0 to N3 for ZZM GD89 and XLZ 30. Compared with ZZM GD89 and XLZ 30, CRI 69, and ZZM 1017 showed higher yield, resulted from higher biomass, bolls per plant, and boll weight, especially under low N level. In addition, the CRI 69 and ZZM 1017 had stronger N absorption and transformation capabilities, and showed higher NUE than those of ZZM GD89 and XLZ 30 under the same N rate. The results indicated that CRI 69 and ZZM 1017 show advantages over ZZM GD89 and XLZ 30 in yield, and NUE, especially under low N rate.


1999 ◽  
Vol 79 (2) ◽  
pp. 277-286 ◽  
Author(s):  
P. A. Bowen ◽  
B. J. Zebarth ◽  
P. M. A. Toivonen

The effects of six rates of N fertilization (0, 125, 250, 375, 500 and 625 kg N ha−1) on the dynamics of N utilization relative to extractable inorganic N in the soil profile were determined for broccoli in three growing seasons. The amount of pre-existing extractable inorganic N in the soil was lowest for the spring planting, followed by the early-summer then late-summer plantings. During the first 2 wk after transplanting, plant dry-matter (DM) and N accumulation rates were low, and because of the mineralization of soil organic N the extractable soil inorganic N increased over that added as fertilizer, especially in the top 30 cm. From 4 wk after transplanting until harvest, DM and N accumulation in the plants was rapid and corresponded to a rapid depletion of extractable inorganic N from the soil. At high N-fertilization rates, leaf and stem DM and N accumulations at harvest were similar among the three plantings. However, the rates of accumulation in the two summer plantings were higher before and lower after inflorescence initiation than those in the spring planting. Under N treatments of 0 and 125 kg ha−1, total N in leaf tissue and the rate of leaf DM accumulation decreased while inflorescences developed. There was little extractable inorganic soil-N during inflorescence development in plots receiving no N fertilizer, yet inflorescence dry weights and N contents were ≥50 and ≥30%, respectively, of the maxima achieved with N fertilization. These results indicate that substantial N is translocated from leaves to support broccoli inflorescence growth under conditions of low soil-N availability. Key words: N translocation, N fertilizer


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2396
Author(s):  
Muhammad Yaseen ◽  
Adeel Ahmad ◽  
Muhammad Naveed ◽  
Muhammad Asif Ali ◽  
Syed Shahid Hussain Shah ◽  
...  

Nitrogen (N) is an essential plant nutrient, therefore, N-deficient soils affect plant growth and development. The excessive and unwise application of N fertilizers result in nutrient losses and lower nutrient use efficiency that leads to the low crop productivity. Ammonia volatilization causes a major loss after N fertilization that causes environmental pollution. This experiment was conducted to evaluate the effectiveness of coating and uncoating N fertilizer in enhancing yield and nutrient-use efficiency with reduced ammonia emissions. The recommended rate of nitrogen and phosphorus, urea and di-ammonium phosphate (DAP) fertilizers were coated manually with 1% polymer solution. DAP (coated/uncoated) and potassium were applied at the time of sowing as subsurface application. While urea (coated/uncoated) was applied as surface and subsurface application. Results showed that nutrient use efficiencies of wheat were found to be maximum with the subsurface application of coated N fertilizer which increased nutrient-use efficiency by 44.57 (N), 44.56 (P) and 44.53% (K) higher than the surface application of uncoated N fertilizer. Ammonia emissions were found the lowest with subsurface-applied coated N fertilizer. Thus, coated fertilizer applied via subsurface was found the best technique to overcome the ammonia volatilization with an improvement in the yield and nutrient-use efficiency of wheat.


2008 ◽  
Vol 88 (5) ◽  
pp. 849-857 ◽  
Author(s):  
P. A. Barbieri ◽  
H. S. Rozas ◽  
H. E. Echeverría

Nitrogen (N) fertilization is an important management practice to increased grain yield; however, it is imperative to increase nitrogen use efficiency (NUE) in order to diminish risks of environmental pollution. The objective of this study was to determine the effect of fertilization times on wheat grain yield, grain N accumulation and grain N recovery efficiency (RE) in different sites and years at the south-eastern wheat belt of the Pampas. The experiments were a factorial combination of N rates and fertilization times (sowing and tillering). Grain yield ranged from 1600 to 7900 kg ha-1 and fertilization at tillering increased grain yield compared with fertilization at sowing (5465 vs. 5110 kg ha-1), similar behavior was observed for grain N accumulation (95 vs. 86 kg ha-1) and RE (0.41 vs. 0.32). Predicted grain yield by CERES-Wheat model for different N rates and fertilization times was correlated with observed grain yield (r2 = 0.71). While fertilization at tillering significantly increased grain yield, CERES-Wheat model estimated nitrate leaching losses that ranged from 12 to 62 kg N ha-1 and from 7 to 16 kg N ha-1 for fertilization at sowing and tillering, respectively. However, denitrification losses ranged from 1.2 to 3.9 and from 0.5 to 2.4 kg N ha-1 for fertilization at sowing and tillering, respectively. Leaching losses for fertilization at sowing are a consequence of water excess early in the growing season and would be the main N loss factor. Therefore, N application at tillering is an appropriate strategy to improve NUE in the south-eastern wheat belt of the Pampas. Key words: Wheat, fertilization time, nitrogen use efficiency, N losses, CERES-Wheat


2014 ◽  
Vol 153 (3) ◽  
pp. 422-431 ◽  
Author(s):  
K. CHENG ◽  
M. YAN ◽  
D. NAYAK ◽  
G. X. PAN ◽  
P. SMITH ◽  
...  

SUMMARYAssessing carbon footprint (CF) of crop production in a whole crop life-cycle could provide insights into the contribution of crop production to climate change and help to identify possible greenhouse gas (GHG) mitigation options. In the current study, data for the major crops of China were collected from the national statistical archive on cultivation area, yield, application rates of fertilizer, pesticide, diesel, plastic film, irrigated water, etc. The CF of direct and indirect carbon emissions associated with or caused by these agricultural inputs was quantified with published emission factors. In general, paddy rice, wheat, maize and soybean of China had mean CFs of 2472, 794, 781 and 222 kg carbon equivalent (CE)/ha, and 0·37, 0·14, 0·12 and 0·10 kg CE/kg product, respectively. For dry crops (i.e. those grown without flooding the fields: wheat, maize and soybean), 0·78 of the total CFs was contributed by nitrogen (N) fertilizer use, including both direct soil nitrous oxide (N2O) emission and indirect emissions from N fertilizer manufacture. Meanwhile, direct methane (CH4) emissions contributed 0·69 on average to the total CFs of flooded paddy rice. Moreover, the difference in N fertilizer application rates explained 0·86–0·93 of the provincial variations of dry crop CFs while that in CH4 emissions could explain 0·85 of the provincial variation of paddy rice CFs. When a 30% reduction in N fertilization was considered, a potential reduction in GHGs of 60 megatonne (Mt) carbon dioxide equivalent from production of these crops was projected. The current work highlights opportunities to gain GHG emission reduction in production of crops associated with good management practices in China.


1994 ◽  
Vol 119 (3) ◽  
pp. 427-433 ◽  
Author(s):  
C.A. Sanchez ◽  
R.L. Roth ◽  
B.R. Gardner

Six field studies were conducted from 1980-88 to evaluate the response of cabbage (Brassica oleracea L., Capitata group) to sprinkler irrigation and sprinkler-applied N fertilizer on a coarse-textured soil. The plots were irrigated using a modified self-moving lateral sprinkler irrigation system that applied five levels of water and five levels of N (liquid NH4NO3) in specified combinations of central composite rotatable design. Cabbage yields were significantly increased by water and N applications in all experiments. The N rates predicted for maximum yield exceeded typical cabbage N fertilizer recommendations. However, the above-average plant populations used in these studies resulted in above-average yields and plant N accumulation. Deficit and excess irrigation produced negative results. Generally, cabbage production was optimized and N losses to the environment were minimized when crops were irrigated for evapotranspiration (ET) replacement. However, even when irrigated for ET replacement, these data demonstrate the potential for N leaching at high N rates, presumably as a result of rainfall.


HortScience ◽  
2013 ◽  
Vol 48 (4) ◽  
pp. 485-492 ◽  
Author(s):  
Desire Djidonou ◽  
Xin Zhao ◽  
Eric H. Simonne ◽  
Karen E. Koch ◽  
John E. Erickson

In addition to managing soilborne diseases, grafting with vigorous rootstocks has been shown to improve yield in tomato (Solanum lycopersicum L.) production. However, the influence of different levels of nitrogen (N) and irrigation supplies on grafted tomato plants has not been fully examined in comparison with non-grafted plants, especially under field conditions. The objective of this two-year study was to determine the effects of different irrigation regimes and N rates on yield, irrigation water use efficiency (iWUE), and N use efficiency (NUE) of grafted tomato plants grown with drip irrigation in sandy soils of north Florida. The determinate tomato cultivar Florida 47 was grafted onto two interspecific hybrid rootstocks, ‘Beaufort’ and ‘Multifort’ (S. lycopersicum × S. habrochaites S. Knapp & D.M. Spooner). Non-grafted ‘Florida 47’ was used as a control. Plants were grown in a fumigated field under 12 combinations of two drip irrigation regimes (50% and 100% of commonly used irrigation regime) and six N rates (56, 112, 168, 224, 280, and 336 kg·ha−1). The field experiments were arranged in a split-plot design with four replications. The whole plots consisted of the irrigation regime and N rate combination treatments, whereas the subplots represented the two grafting treatments and the non-grafted plants. Self-grafted ‘Florida 47’ was also included in the 100% irrigation and 224 kg N/ha fertilization treatment as a control. In 2010, the 50% irrigation regime resulted in higher total and marketable yields than the 100% irrigation regime. Tomato yield was significantly influenced by N rates, but similar yields were achieved at 168 kg·ha−1 and above. Plants grafted onto ‘Beaufort’ and ‘Multifort’ showed an average increase of 27% and 30% in total and marketable fruit yields, respectively, relative to non-grafted plants. In 2011, fruit yields were affected by a significant irrigation by N rate interaction. Grafting significantly increased tomato yields, whereas grafted plants showed greater potential for yield improvement with increasing N rates compared with non-grafted plants. Self-grafting did not affect tomato yields. More fruit per plant and higher average fruit weight as a result of grafting were observed in both years. Grafting with the two rootstocks significantly improved the irrigation water and N use efficiency in tomato production. Results from this study suggested the need for developing irrigation and N fertilization recommendations for grafted tomato production in sandy soils.


Sign in / Sign up

Export Citation Format

Share Document