scholarly journals Auxin-induced Ethylene Synthesis during Rooting and Inhibition of Budbreak of `Royalty' Rose Cuttings

1993 ◽  
Vol 118 (5) ◽  
pp. 638-643 ◽  
Author(s):  
Wen-Quan Sun ◽  
Nina L. Bassuk

Single-node `Royalty' rose (Rosa hybrida L.) cuttings were used to examine the relationship between adventitious root formation, budbreak, and ethylene synthesis following IBA treatment. IBA was applied as a lo-second basal quick dip before rooting, and AIB, GA3, STS, and ethephon were applied either as basal dips or foliar sprays. IBA application increased rooting and inhibited budbreak of cuttings. IBA 2 600 mg·liter-1 greatly inhibited budbreak during 4 weeks of rooting. IBA treatment stimulated ethylene synthesis, which was inversely correlated with budbreak of cuttings. Ethephon also significantly inhibited budbreak. Budbreak of rose cuttings was completely prevented by repeated ethephon sprays used to maintain high endogenous ethylene levels during the first 10 days. Treatment with STS, an ethylene-action inhibitor, improved budbreak. The inhibition of budbreak by IBA treatment resulted primarily from elevated ethylene levels. Root initiation and root elongation of cuttings initially inhibited budbreak, but later promoted budbreak. Chemical names used: indole-3-butyric acid (IBA); gibberellic acid (GA3); silver thiosulfate (STS); AIB, aminoisobutyric acid (AIB); (2-chloroethyl)-phosphoric acid (ethephon).

2019 ◽  
Vol 20 (5) ◽  
pp. 1047 ◽  
Author(s):  
Jian Yu ◽  
Lijuan Niu ◽  
Jihua Yu ◽  
Weibiao Liao ◽  
Jianming Xie ◽  
...  

Calcium and ethylene are essential in plant growth and development. In this study, we investigated the effects of calcium and ethylene on adventitious root formation in cucumber explants under salt stress. The results revealed that 10 μM calcium chloride (CaCl2) or 0.1 μM ethrel (ethylene donor) treatment have a maximum biological effect on promoting the adventitious rooting in cucumber under salt stress. Meanwhile, we investigated that removal of ethylene suppressed calcium ion (Ca2+)-induced the formation of adventitious root under salt stress indicated that ethylene participates in this process. Moreover, the application of Ca2+ promoted the activities of 1-aminocyclopropane-l-carboxylic acid synthase (ACS) and ACC Oxidase (ACO), as well as the production of 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene under salt stress. Furthermore, we discovered that Ca2+ greatly up-regulated the expression level of CsACS3, CsACO1 and CsACO2 under salt stress. Meanwhile, Ca2+ significantly down-regulated CsETR1, CsETR2, CsERS, and CsCTR1, but positively up-regulated the expression of CsEIN2 and CsEIN3 under salt stress; however, the application of Ca2+ chelators or channel inhibitors could obviously reverse the effects of Ca2+ on the expression of the above genes. These results indicated that Ca2+ played a vital role in promoting the adventitious root development in cucumber under salt stress through regulating endogenous ethylene synthesis and activating the ethylene signal transduction pathway.


1989 ◽  
Vol 67 (2) ◽  
pp. 477-482 ◽  
Author(s):  
L. A. Rupp ◽  
K. W. Mudge ◽  
F. B. Negm

The role of ethylene in mycorrhiza formation and root development on axenically grown seedlings of Pinus mugo Turra var. mugo was examined. Mycorrhizal formation by Laccaria laccata and Pisolithus tinctorius in a defined liquid medium was associated with increased ethylene production. Ethephon (100 μM) stimulated dichotomous branching of roots inoculated with P. tinctorius, but had no effect on those inoculated with L. laccata, or on uninoculated roots. Ethephon had no effect on the percentage of susceptible roots that became mycorrhizal with either fungus. The inhibitor of ethylene action, silver thiosulfate, had no significant effect on mycorrhiza formation by P. tinctorius, but it did show a trend toward decreased mycorrhiza formation by L. laccata when applied at concentrations of 10 μM or higher. Silver thiosulfate at 100 or 500 μM slightly increased dichotomous root branching of seedlings inoculated with either fungus, but these concentrations also caused blackening of root meristems and inhibition of root growth. These results are consistent with the interpretation that endogenous ethylene may influence mycorrhiza formation and associated changes in root morphology.


Weed Science ◽  
1972 ◽  
Vol 20 (3) ◽  
pp. 274-277 ◽  
Author(s):  
Leonard G. Copping ◽  
D. E. Davis ◽  
C. G. P. Pillai

Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] and 2-(ethylamino)-4-(isopropylamino)-6-(methylthio)-s-triazine (ametryne) were tested for growth regulatorlike effects. In the presence of 10 μg/ml of kinetin, atrazine had no effect on the growth of callus tissue of soybean (Glycine max Merr. ‘Lee’), but ametryne at 10−14M concentration stimulated callus growth and the production of roots. High concentrations of both atrazine and ametryne inhibited the growth of excised roots of tomato (Lycopersicon esculentum Miller ‘Atkinson’). Ametryne, and to a lesser extent atrazine, increased percent germination of seed of lettuce (Lactuca sativa L. ‘Grand Rapids’) and tobacco (Nicotiana tobaccum L. ‘Sansum’) exposed to only 4 min of red light. Both atrazine and ametryne stimulated adventitious root formation by excised hypocotyls of mung beans (Phaseolus aureus Roxb.) in the absence of 10 ppm of exogenous indoleacetic acid (IAA) but not in its presence. A high concentration of atrazine (10−6M) in the presence of IAA decreased root initiation in comparison with the IAA-treated controls.


Planta ◽  
2021 ◽  
Vol 254 (4) ◽  
Author(s):  
Millicent A. Otiende ◽  
Klaus Fricke ◽  
Julius O. Nyabundi ◽  
Kamau Ngamau ◽  
Mohammad R. Hajirezaei ◽  
...  

Abstract Main conclusion Enhanced levels of indole-3-acetic and raised auxin to cytokinin ratios in the stem base contribute to the positive acropetal gradient in rooting capacity of leafy single-node stem cuttings of rose. Abstract Cuttings excised from different nodal positions in stock plants can differ in subsequent adventitious root formation. We investigated the involvement of the auxin–cytokinin balance in position-affected rooting of Rosa hybrida. Leafy single-node stem cuttings of two rose cultivars were excised from top versus bottom positions. Concentrations of IAA and cytokinins were monitored in the bud region and the stem base during 8 days after planting using chromatography–MS/MS technology. The effects of nodal position and external supply of indole-butyric acid on rooting were analyzed. Most cytokinins increased particularly in the bud region and peaked at day two before the bud break was recorded. IAA increased in both tissues between day one and day eight. Top versus bottom cuttings revealed higher levels of isopentenyladenosine (IPR) in both tissues as well as higher concentrations of IAA and a higher ratio of IAA to cytokinins particularly in the stem base. The dynamic of hormones and correlation analysis indicated that the higher IPR contributed to the enhanced IAA in the bud region which served as auxin source for the auxin homeostasis in the stem base, where IAA determined the auxin–cytokinin balance. Bottom versus top cuttings produced lower numbers and lengths of roots, whereas this deficit was counterbalanced by auxin application. Further considering other studies of rose, it is concluded that cytokinin-, sucrose- and zinc-dependent auxin biosynthesis in the outgrowing buds is an important factor that contributes to the enhanced IAA levels and auxin/cytokinin ratios in the stem base of apical cuttings, promoting root induction.


2006 ◽  
Vol 131 (4) ◽  
pp. 564-570 ◽  
Author(s):  
Iwanka Kozarewa ◽  
Daniel J. Cantliffe ◽  
Russell T. Nagata ◽  
Peter J. Stoffella

Ethylene synthesis and sensitivity, and their relation to germination at supraoptimal temperatures, were investigated in lettuce (Lactuca sativa L.) seeds matured at 30/20 °C [12-h day/night, high temperature matured (HTM)] or 20/10 °C [12-h day/night, low temperature matured (LTM)]. HTM seeds of both thermosensitive `Dark Green Boston' (DGB) and thermotolerant `Everglades' (EVE) had greater germination at a supraoptimal temperature (36 °C), in both light or dark, than LTM seeds of DGB and EVE. HTM seeds of DGB and EVE produced more ethylene during germination than LTM seeds, regardless of imbibition conditions. The ethylene action inhibitor, silver thiosulfate, led to reduced germination in both cultivars. The ethylene precursor, 1-aminocyclopropane-1-carboxylic acid at 10 mm increased germination of both cultivars at supraoptimal temperatures, whereas germination of HTM seeds was greater than that of LTM seeds. No differences in ethylene perception were detected between HTM and LTM germinating seeds using a triple response bioassay. This study demonstrated that at least one method through which seed maturation temperature influences lettuce germination is by affecting ethylene production.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 562c-562
Author(s):  
James R. McKenna ◽  
Ellen G. Sutter

The use of auxin-impregnated toothpicks stimulated adventitious root formation in genotypes of Juglans `Paradox' that had been backcrossed to J. regia. These genotypes were selected as potential rootstocks because of improved tolerance to cherry leaf roll virus and Phytophthora spp. Other auxin applications including quick dips and talc formulations had little or no effect. The use of toothpicks lowered the concentration of IBA necessary for root initiation compared to previously reported results using quick dips. Toothpicks were inserted transversely into holes drilled 1 to 2 cm above the base of cuttings. Callus and roots always formed at the location of the toothpicks rather than at the base of the cutting. Roots were formed using this method in simple layering, hardwood, and semi-hardwood cuttings. Of all the cuttings that rooted, 90% rooted with toothpicks whereas only 10% rooted using a quick dip. This method may have potential for increasing the efficiency of rooting other difficult-to-root plants.


Sign in / Sign up

Export Citation Format

Share Document