scholarly journals Zinc Uptake and Shoot Partitioning Between Zinc Efficient and Inefficient Exacum Genotypes

2005 ◽  
Vol 130 (5) ◽  
pp. 674-679
Author(s):  
Andrew Riseman ◽  
Richard Craig ◽  
Jonathan P. Lynch

Interspecific hybrids of exacum (Exacum L.) display variable responses to zinc nutrition. Our research compared two genotypes with contrasting zinc efficiency phenotypes in terms of root cation exchange capacity (CEC), whole plant 65Zn uptake, and the effects of Cu+2 and Mg+2 on 65Zn uptake and partitioning to shoot tissues. Results show that the zinc efficient and inefficient genotypes had significantly different root CEC [27.2 and 16.9 cmol(+)·kg-1 root dry weight (DW), respectively] and whole plant 65Zn uptake rates (0.048 and 0.026 μmol·h-1·g-1 DW, respectively). In equimolar concentrations to Zn+2, Cu+2 reduced Zn+2 uptake by approximately 50% in both genotypes while supplemental Mg+2 enhanced Zn+2 uptake. In addition, Mg+2 facilitated a larger proportion of absorbed 65Zn to the upper shoot of the efficient genotype. We conclude zinc is absorbed through a specific Zn+2/Cu+2 transporter and that zinc efficiency in exacum is based on a combination of apoplastic and symplastic traits. In addition, a secondary Mg+2 × Zn+2 interaction may contribute to the zinc efficiency phenotype.

2005 ◽  
Vol 62 (6) ◽  
pp. 552-558 ◽  
Author(s):  
Adriel Ferreira da Fonseca ◽  
Luís Reynaldo Ferracciú Alleoni ◽  
Adolpho José Melfi ◽  
Célia Regina Montes

The addition of Na-rich anthropogenic residues to tropical soils has stimulated the scientific community to study the role of sodium in both the soil solution and the exchange complex. In this study, several different methods were used to calculate the concentration of exchangeable and soluble cations and this data was then used to establish correlations between the level of these cations and both the accumulation of various elements and the dry weight of maize grown in a greenhouse under different conditions. In the closed environments of the pots, the most suitable method for calculating the effective cation exchange capacity (ECEC) was the cation exchange capacity calculated by cations removed with barium chloride solution (CEC S). Then again, the actual cation exchange capacity (CEC A) should be measured by using Mg adsorption to prevent ionic force from influencing electric charges. A strong positive correlation was obtained between the concentrations of Na in the 1:2 soil:water extracts and the accumulation of Na in the maize plants, indicating saline or double acid extractors are not needed when monitoring the Na concentration only.


1989 ◽  
Vol 67 (2) ◽  
pp. 460-465 ◽  
Author(s):  
Conrad Richter ◽  
Jack Dainty

Isolated delignified cell walls from Sphagnum russowii Warnsdorf were incubated in various chloride salt solutions at neutral pH (pH 7 – 8), and ion sorption was measured directly by neutron activation analysis. The anion-exchange capacity was estimated to be 63 – 66 μequiv./g dry weight of wall material in the protonated form. The volume of the anion-exclusion space was 2.63 ± 0.21 (± SD, n = 3) and 1.65 ± 0.35 (± SD, n = 2) mL/g dry weight in NaCl and CaCl2, respectively. A novel approach to measure the Donnan free space is proposed: for walls equilibrated in a salt mixture containing 10 mequiv./L NaCl and 10 mequiv./L CaCl2, the Na+ ions can be considered "uncondensed" in the Manning sense. From the Donnan relationship for Na+ and Cl− ions in the internal and external phases, the Donnan free space was calculated to be 1.77 mL/g dry weight. Titrating walls from pH 2.1 to 9.1 in the presence of 10 mequiv./L NaCl and 10 mequiv./L CaCl2 revealed a maximum cation-exchange capacity above pH 6 of ca. 1900 μequiv./g dry weight. This corresponds to a fixed anionic charge concentration in the Donnan free space of 1.1 M. Key words: ion exchange, cell wall, Donnan free space.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 571b-571
Author(s):  
Andrew Riseman ◽  
Richard Craig

Research in Penn State's Exacum breeding program has revealed genotypic variation for the development of zinc deficiency, which may indicate the presence of zinc efficiency factors. Through preliminary experiments, we have identified both genetic families and individual genotypes that can be classified as either zinc-efficient or zinc-inefficient. Chi-square contingency analyses indicate significant differences (P < 0.001) in segregation patterns for zinc deficiency among hybrid families. Segregation patterns within families ranged from 100% of the progeny developing zinc deficiency to 100% of the progeny remaining healthy. Two genotypes contrasting in zinc efficiency have been identified and used in experiments designed to investigate physiological factors related to zinc efficiency. The zinc-efficient genotype has a significantly higher ability to decrease solution pH (P < 0.01), significantly higher root cation exchange capacity (P < 0.007), significantly lower root/shoot ratio (P < 0.001), significantly lower water loss/cm2 leaf (P < 0.03), and significantly higher fresh weight/dry weight ratio (P < 0.001). Research on zinc uptake rates is currently being conducted utilizing the efficient and inefficient genotypes. Based on all of our research, we conclude that 1) a strong genetic effect is involved in the zinc nutritional status of interspecific Exacum hybrids and 2) a number of physiological traits differ between zinc-efficient and zinc-inefficient genotypes.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 464e-465
Author(s):  
Robert R. Tripepi ◽  
Charlyn A. Koehn

De-inked paper sludge from newsprint recycling was evaluated as an alternative amendment in bedding plant production. `Sweet Dreams' geranium (Pelargonium × hortorum) and `Crystal White' zinnia (Zinnia angustifolia) were grown in square 10-cm pots in one of five media. Media contained 0%, 20%, 40%, 60%, or 80% de-inked paper sludge by volume. All mixes contained 10% perlite, and peatmoss was used to bring the volume to 100%. Initial chemical and physical characteristics of the media were determined. Plants were grown in a greenhouse for 8 weeks, and then plant height, shoot dry weight, and average plant width were determined. Media containing 20% or less paper sludge had an average pH of 4.4, whereas those containing more sludge had an average pH of 7.0. Cation exchange capacity of the media decreased significantly as the volume of sludge increased. Media containing 60% or more paper sludge were better aerated, but held less water than those made with 40% or less de-inked sludge. Geraniums grown in 20% or less paper sludge were at least 18% taller than those grown in medium containing 40% or more de-inked sludge, but average dry weights and plant widths of these plants were unaffected by the media. Zinnia plants grown in 20% or less paper sludge produced four times more shoot dry weight and were at least 34% taller and 20% wider than those grown in 40% or more sludge. Overall, zinnias grown in 40% or more sludge were unacceptable for commercial sale. A volume of 20% de-inked paper sludge could safely be included in potting media used for production of `Sweet Dreams' geranium and `Crystal White' zinnia.


HortScience ◽  
2000 ◽  
Vol 35 (6) ◽  
pp. 1083-1086 ◽  
Author(s):  
Wei Qiang Yang ◽  
Barbara L. Goulart

Aluminum (Al) uptake by and root cation exchange capacity (CEC) of mycorrhizal (M) and nonmycorrhizal (NM) blueberry (Vaccinium corymbosum L.) plants were studied. Root CEC was higher in M plants than in NM plants, but total and root Al contents were higher in NM plants. Leaf Al content was higher in NM than in M plants after 1 and 5 hours of exposure. The aurintriboxylic acid stain for Al indicated the presence of Al in the M symbiont. Despite a larger root system and higher root CEC, regression analysis indicated roots of M plants absorbed less Al in the first 5 hours, suggesting that Al sequestration in the M symbiont is responsible for reduced total Al uptake. Differences in dry matter partitioning between M and NM plants were also observed.


1996 ◽  
Vol 14 (2) ◽  
pp. 110-117 ◽  
Author(s):  
A.A. Delmonte ◽  
F. Bedmar ◽  
J.D. Mantecón ◽  
H. Echeverría ◽  
C.A. Barassi

Atrazine persistence in soils of the southeast of Buenos Aires Province, was studied by an oat bioassay. Atrazine doses of 0.58, 1.16, and 2.32 mg.g-1 dry soil weight (DSW) were applied to pots containing soils from Balcaree, A. Gonzáles Chaves and San Cayetano sites, whose organic matter (OM) content of soils were 5.70, 5.15, and 3,84%, respectively. Avena sativa cv. Millauquén plants were grownth in the pots under greenhouse conditions at different times after atrazine application. Shoots were evenly cut above the soil and dry weight determined as a measure of plant growth. Plants grown in non-sprayed soil were used as controls. Relative dry weight (RDW) of shoots was calculated as percentage of control. Atrazine phytotoxicity was expressed in terms of 50 % plant growth reduction (GR50) in the soils under study. Herbicide persistence was expressed in terms of days after treatment (DAT) needed for the plant to achieve 80% of RDW. Atrazine GR50 values of 0.30, 0.64, and 0.90 mg.g-1 DSW in soils from San Cayetano, Balcare and A.G. Chaves, were respectively obtained at 42 DAT. Herbicide persistences at the recommended dose (1.16 mg.g-1) were 100, 143, and 221 DAT for A.G. Chaves, Balcarce and San Cayetano soils, respectively. San Cayetano soil had both the lowest OM content and cation exchange capacity (CEC), as well as the highest pH, of all the soil studied here. These results were consistent with both the lowest GR50 and the highest persistence abtained for atrazine in this soil.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


2020 ◽  
Vol 66 (No. 9) ◽  
pp. 468-476
Author(s):  
Miroslav Jursík ◽  
Martin Kočárek ◽  
Michaela Kolářová ◽  
Lukáš Tichý

Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015–2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0–5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.  


Sign in / Sign up

Export Citation Format

Share Document