scholarly journals Substrate Acidification by Geranium: Temperature Effects

2008 ◽  
Vol 133 (4) ◽  
pp. 508-514 ◽  
Author(s):  
Matthew D. Taylor ◽  
Paul V. Nelson ◽  
Jonathan M. Frantz

Sudden pH decline (SPD) describes the situation where crops growing at an appropriate pH rapidly (within 1–2 weeks) cause the substrate pH to shift downward one to two units. ‘Designer Dark Red’ geraniums (Pelargonium ×hortorum Bailey) were grown in three experiments to assess possible effects of temperature on SPD. The first experiment tested the effect of four day/night temperature regimes (14 °C day/10 °C night, 18 °C day/14 °C night, 22 °C day/18 °C night, and 26 °C day/22 °C night) on substrate acidification. At 63 days after transplanting (DAT), substrate pH declined from 6.8 to 4.6 as temperature increased. Tissue phosphorus (P) of plants grown at the highest three temperatures was extremely low (0.10%–0.14% of dry weight), and P stress has been reported to cause acidification. It was not possible to determine if the drop in substrate pH was a singular temperature effect or a combination of high temperature and low P. To resolve this, a second experiment tested a factorial combination of the three highest temperatures from the first experiment and five preplant P rates (0, 0.065, 0.13, 0.26, or 0.52 g·L−1 substrate). Regardless of tissue P concentrations, which ranged from deficient to above adequate, substrate pH decreased with increasing temperature. At 63 DAT, in the 0.065 and 0.13 P treatments, tissue P was deficient and pH decreased with increasing temperature from 5.6 to 4.7 and 5.9 to 4.7, respectively. In the 0.26 P treatment, tissue P was adequate at the lowest temperature and there was no acidification. At the mid- and highest temperatures, tissue P was deficient and statistically equivalent, yet pH decreased to 5.2 and 4.7, respectively. In the highest P treatment, tissue P levels were unaffected by temperature, above adequate, and pH declined with each increase in temperature from 6.5 to 5.0. The results at 63 DAT once more showed that temperature acted independent of tissue P and caused geraniums to acidify the substrate. In the third experiment, the amount of acidity produced by roots of plants grown at the two highest temperatures used in the first two experiments was quantified. Plants grown at the higher temperature produced 28% more acid per gram dry root. The results herein indicate that high temperature can induce SPD by geranium.

1983 ◽  
Vol 10 (1) ◽  
pp. 1 ◽  
Author(s):  
PK Mohapatra ◽  
D Aspinall ◽  
CF Jenner

The effects of high temperature on the growth and development of the shoot apex of wheat, cv. Warimba, growing in a short photoperiod (8 h) were examined. High temperature (30°C) from germination onwards delayed the initiation of double ridges on the apex in comparison to low temperature (20°C) but did not affect the subsequent rate of spikelet development to stamen initiation. The rate of primordium production on the apex was reduced at the higher temperature and there was a decrease in the final number of spikelets produced. The growth in dry weight of both the shoot and apex was reduced at the higher temperature, but the relative growth rate of the apex was unaffected after double-ridge initiation. The sucrose concentration in the shoot apex tended to be higher at the higher temperature and so it was concluded that the effects of exposure to high temperature on apex growth were not mediated through effects on assimilate supply.


2014 ◽  
Vol 38 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Farida Begum ◽  
Ashratun Nessa

The effect of high temperature on some physiological traits of wheat has been studied under controlled condition in a green house. The temperature stress chosen for the study were 25±1/14±10C (control) 28±1/18±10C day/night and 35±1/25±10C day/night temperature. Total crop duration was reduced under higher temperature. The results showed that leaf dry weight, shoot dry weight, flag leaf area of wheat was reduced under higher temperature. High temperature brought sterility and consequently reduced grain yield. Wheat plant grown under 35±1/25±10C, day night temperature failed to form any seed. Chlorophyll content also directly related to grain weight. High temperature reduced leaf chlorophyll content as well as grain weight. DOI: http://dx.doi.org/10.3329/jbas.v38i2.21332 Journal of Bangladesh Academy of Sciences, Vol. 38, No. 2, 103-110, 2014


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Noémie Deldicq ◽  
Dewi Langlet ◽  
Camille Delaeter ◽  
Grégory Beaugrand ◽  
Laurent Seuront ◽  
...  

AbstractHeatwaves have increased in intensity, duration and frequency over the last decades due to climate change. Intertidal species, living in a highly variable environment, are likely to be exposed to such heatwaves since they can be emerged for more than 6 h during a tidal cycle. Little is known, however, on how temperature affects species traits (e.g. locomotion and behaviour) of slow-moving organisms such as benthic foraminifera (single-celled protists), which abound in marine sediments. Here, we examine how temperature influences motion-behaviour and metabolic traits of the dominant temperate foraminifera Haynesina germanica by exposing individuals to usual (6, 12, 18, 24, 30 °C) and extreme (high; i.e. 32, 34, 36 °C) temperature regimes. Our results show that individuals reduced their activity by up to 80% under high temperature regimes whereas they remained active under the temperatures they usually experience in the field. When exposed to a hyper-thermic stress (i.e. 36 °C), all individuals remained burrowed and the photosynthetic activity of their sequestered chloroplasts significantly decreased. Recovery experiments subsequently revealed that individuals initially exposed to a high thermal regime partially recovered when the hyper-thermic stress ceased. H. germanica contribution to surface sediment reworking substantially diminished from 10 mm3 indiv−1 day−1 (usual temperature) to 0 mm3 indiv−1 day−1 when individuals were exposed to high temperature regimes (i.e. above 32 °C). Given their role in sediment reworking and organic matter remineralisation, our results suggest that heatwaves may have profound long-lasting effects on the functioning of intertidal muddy ecosystems and some key biogeochemical cycles.


1982 ◽  
Vol 9 (2) ◽  
pp. 209 ◽  
Author(s):  
HM Rawson ◽  
JH Hindmarsh

Five commercial cultivars of sunflower were grown in cabinets at three temperature regimes, 32/22, 27/17 and 22/12°C, and with 15-h and 11-h photoperiods, and expansion of leaves 5-15 was followed. Leaves appeared faster with increasing temperature (0.022 leaves day-1 °C-1) and with increasing daylength. Areas of individual leaves increased linearly up the plant profile and, although final area per leaf (Amax) decreased with increasing temperature, the relative change was similar for each leaf position. Cultivars maintained their ranking for Amax across temperatures, and these rankings agreed with those in previous field studies. Within each temperature regime, both the expansion rate of leaves and the duration of expansion increased with leaf position. As temperature increased, leaves grew for shorter periods with a change of 1.04 days °C-1, but under the photon flux density used (500 �mol m-2 s-1, or about 25% full sunlight) expansion rates were greatest at the lowest temperature. Expansion rates were only one-third of those in field studies at comparable temperatures, but durations were similar. Cultivars that achieved the largest Amax did so via faster rates of expansion and not via longer durations: only one cultivar differed from the mean (20 days) duration of leaf expansion. All cultivars reached floral initiation progressively earlier with extension of photoperiod from 10 to 15 h, with the change for the most sensitive cultivars being 8 days and for the least sensitive 5 days. Rates of leaf emergence were linked with this sensitivity.


Weed Science ◽  
1993 ◽  
Vol 41 (3) ◽  
pp. 369-378 ◽  
Author(s):  
David A. Wall

In a replacement series study, barley was more competitive than green foxtail and wild oat at 28/22 and 22/16 C. Wild oat was more competitive with green foxtail at 22/16 C than at 28/22 C. Maximum green foxtail dry weight and leaf area was produced at 28/22 C. As temperature increased, maximum dry weight and leaf area occurred earlier during plant growth. Similarly, maximum wild oat leaf area occurred earlier with increasing temperature, but the greatest leaf area was observed at 16/10 C. Leaf area ratio (LAR) and relative growth rate (RGR) of wild oat did not differ markedly between temperature regimes. Green foxtail LAR was higher while RGR was lower at 16/10 C than at 22/16 or 28/22 C. Under the 16/10 C regime green foxtail produced little mature seed. Greatest seed numbers were produced at 28/22 C. Wild oat produced mature seed under all temperature regimes with the greatest seed numbers produced at 22/16 C.


1995 ◽  
Vol 35 (6) ◽  
pp. 771 ◽  
Author(s):  
HJ Ogle ◽  
AM Stirling ◽  
PJ Dart

The effects of temperature and cultivar on disease development in cotton were investigated in addition to the duration of susceptibility to infection and the timing of infection by Pythium ultimum and Rhizoctonia solani. Symptom development was also monitored. Disease was more severe at day/night temperature regimes of 20/15, 25/20, and 30/25�C than at 35/30�C. Disease development differed significantly between cotton cvv. Deltapine 90 and Siokra 1-4 at 30/25�C and 35/30�C. In glasshouse trials in field soil, both R. solani and P ultimum were isolated from seeds as early as 2 h after inoculation, although most seeds were not infected with P. ultimum until 10 h after inoculation and with R. solani until 24 h after inoculation. Increasing the duration of exposure to inoculum increased the number of seeds infected and reduced the number of plants surviving. Seedlings were resistant to P. ultimum infection by 14 days after sowing but were not resistant to infection by R. solani until 28 days after sowing.


Weed Science ◽  
2004 ◽  
Vol 52 (2) ◽  
pp. 267-270 ◽  
Author(s):  
J. Scott McElroy ◽  
Fred H. Yelverton ◽  
Joseph C. Neal ◽  
Thomas W. Rufty

Experiments were conducted in environmental chambers to the evaluate effects of photoperiod and temperature on Florida betony growth and development. Plants were exposed to two photoperiods, short day (9 h) and long day (9 + 3 h night interruption), and three day/night temperature regimes, 18/14, 22/18, and 26/22 C. After 10 wk of growth, shoot length and weight were 3.4 and 3.5 times greater, respectively, in the long-day photoperiod and with the 26 and 22 than with the 22 and 18 C day and night temperature regime, respectively. Shoot number, however, was greatest in the short-day photoperiod and at a lower temperature of 22/18 C. Shoot number in long day 22/18 C and 26/22 C environments increased asymptotically. No difference in root weight was observed between long- and short-day environments, but root weight increased with increasing temperature. Flowering and tuber production only occurred in long-day environments, with greater production of both at higher temperatures. Results provide a general framework for understanding Florida betony growth and development characteristics in the field and provide insights that should be considered in developing control strategies.


1965 ◽  
Vol 16 (5) ◽  
pp. 817 ◽  
Author(s):  
D McEAlexander

Poor fruit set of sultanas in the Murray Valley is sometimes attributed to excessively high temperatures around flowering time. Experiments with small fruiting sultana vines in pots suggest that water stress is the more important factor. Fruit set was significantly less when a 3-day period of water stress was imposed at flowering or 1, 2, or 4 weeks after flowering, but not when it was imposed 6 weeks after flowering. Three days with maximum temperatures above 45°C at or 1 week after flowering did not reduce fruit set when ample water was supplied. When controlled environments combining day temperatures between 21 and 30°C with night temperatures between 19 and 25° were used, no significant differences in fruit set were found, although shoot growth increased with increasing night temperature. Shoot elongation slowed down during periods of applied water stress but recovered, when the stress was ended, to a rate greater than that of plants which had not been stressed.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1076A-1076
Author(s):  
Sorkel Kadir ◽  
Said Ennahli ◽  
Ben Glass

Interactive effects of different temperature regimes and anti-transpiration organic materials, Surround WP (kaolinite clay) and Raynox (sun-protectant), on two strawberry (Fragaria ×ananassa) cvs. Chandler and Sweet Charlie were investigated under controlled environmental conditions. Newly planted strawberries treated with Surround and Raynox were subjected to 20/15, 30/25, and 40/35 °C (day/night) temperature regimes and 16 day/8 night photoperiod in growth chambers for 42 d. Photosynthesis (A) and photochemical efficiency (Fv/Fm) were measured at 7-d intervals during the experiment. Plants treated with Raynox displayed greater resistance to high temperature (40/35 °C) compared to those treated with Surround. Net photosynthesis of both cultivars decreased significantly with time at 40/35 °C. There was no significant difference in photosynthetic rate between the two cultivars. Nevertheless, there was difference in plant biomass between the cultivars. Raynox provided more protection against high temperature, specifically in reducing stomatal conductance and limiting transpiration, than Surround.


1970 ◽  
Vol 35 (3) ◽  
pp. 525-534 ◽  
Author(s):  
SR Saha ◽  
MM Hossain ◽  
MM Rahman ◽  
CG Kuo ◽  
S Abdullah

A study on heat tolerance in sweet pepper was conducted at the Asian Vegetable Research and Development Centre (AVRDC), Taiwan from December 1999 to May 2000. Experiments were carried out to investigate the influence of 29/23°C and 24/18°C stress on 12 sweet pepper genotypes on growth, development, reproductive behaviour and yield potentialities and to verify the results of the phytotron study. Performance of 12 sweet pepper genotypes was evaluated under two different temperature regimes of 24/18° C and 29/23° C in the phytotron. Plant height was found higher at 29/23° C compared to 24/18° C. High temperature reduced percent fruit set as well as size of fruits. Individual fruit weight was higher (7.44-125.00 g) when grown at 24/18°C and lower (5.35-103.80 g) at 29/23°C. Out of 12 genotypes, SP00l, SP002, SP004, and SP012 performed poor in respect of per plant yield at higher temperature compared to the lower temperature. So, these four genotypes were considered to be heat sensitive than the others. Leaf proline content of the sensitive genotypes decreased under the high temperature conditions and the heat tolerant lines produced higher amount of proline indicating the role of proline in expressing the heat tolerant capability of sweet pepper genotypes concerned. Keywords: High temperature stress; performance; sweet pepper. DOI: 10.3329/bjar.v35i3.6459Bangladesh J. Agril. Res. 35(3) : 525-534


Sign in / Sign up

Export Citation Format

Share Document