scholarly journals Cold Acclimation Attributes of Two Asparagus Cultivars with Varying Patterns of Fern Senescence

2011 ◽  
Vol 136 (3) ◽  
pp. 177-189 ◽  
Author(s):  
Erik J. Landry ◽  
David J. Wolyn

Adequate winterhardiness is crucial for yield stability of asparagus (Asparagus officinalis) cultivars in southern Ontario, Canada, and could be influenced by pattern of the fall fern senescence. Fern of cultivar Guelph Millennium (GM) turns yellow or senesces by mid-October, before that of cultivar Jersey Giant (JG), which often remains green until a killing frost. Early fern senescence could be a signal for cold acclimation competency and consequently winterhardiness, explaining the superior stand longevity and yield observed for GM compared with JG. A field experiment was conducted from mid-August to November to measure physiological parameters related to cold acclimation in fern, rhizome, and storage roots. During fall, fern chlorophyll concentration, rhizome nitrogen concentration, percent water of the crown, and storage root LT50 (temperature at which 50% cell death occurs) decreased. Cultivars did not differ for storage root percent water; however, values were smaller (greater dehydration) for GM than JG in the rhizome. At the end of the sampling period, GM had higher and lower concentrations of rhizome low-molecular-weight, non-structural carbohydrates and sucrose, respectively, than JG, which could support a hypothesis of greater winterhardiness in GM. Storage root LT50 values of –19 °C and the lack of cultivar differences for this trait, in conjunction with differences between GM and JG for rhizome traits thought to be important for freezing tolerance, suggest characteristics of the rhizome in conjunction with timing of fern senescence may be important in cold acclimation of asparagus.

2002 ◽  
Vol 29 (4) ◽  
pp. 517 ◽  
Author(s):  
Jianmin Guo ◽  
William A. Jermyn ◽  
Matthew H. Turnbull

The aim of this study was to investigate the roles of carbon partitioning and sucrose metabolism in regulating cultivar differences in spear yield in asparagus (Asparagus officinalis L.). In the two cultivars studied, maximum net photosynthetic rate (Amax) was positively correlated with sucrose phosphate synthase (SPS) activity (r2=0.86), which was in turn linked to increases in sucrose content in cladophyll tissue. The high-yielding cultivar ASP-69 exhibited greater SPS activity and sucrose content than the low-yielding cultivar ASP-03, in fully-expanded and mature cladophyll tissue. ASP-69 also displayed a higher percentage of soluble solids in stem cell sap than did ASP-03. Sucrose synthase (SS) activity in storage roots in ASP-69 was significantly greater than in ASP-03 during fern growth season. Total non-structural carbohydrate (TNC) in storage roots did not differ in the two cultivars. Biomass analysis revealed that ASP-69 had a greater root/shoot ratio than ASP-03, suggesting that the total carbohydrate storage pool, rather than carbohydrate concentration, is an important determinant of asparagus yield. The overall results substantiate the conclusion that carbohydrate partitioning in the two asparagus cultivars studied is a property of the entire plant, and is influenced by both source and sink properties. This is highlighted by greater Amax, SPS activity and sucrose concentrations in cladophyll tissue in ASP-69, and greater SS activity and total carbohydrate content in storage root tissue in ASP-69.


2016 ◽  
Vol 96 (2) ◽  
pp. 252-264 ◽  
Author(s):  
Mahmoud Panjtandoust ◽  
David J. Wolyn

Asparagus (Asparagus officinalis L.) cultivars differ for adaptation in southern Ontario, and delayed or decreased acquisition of freezing tolerance in the fall could explain, in part, the diminished longevity observed in some germplasm. A field study was conducted to determine the relationship between LT50, the lethal temperature at which 50% of plants die, and physiological parameters related to freezing tolerance, in three cultivars with varying adaptation in southern Ontario: Guelph Millennium (GM) > Jersey Giant (JG) > UC 157 (UC). The experiment was replicated at two sites in one location, in each of two years. LT50 values for GM were lower (increased freezing tolerance) than those for UC in early October; levels for JG were intermediate. In late-October and early-November, the cultivars did not differ. Increased freezing tolerance was associated with high low-molecular-weight fructan (LF), protein and proline concentrations and low sucrose concentration in the rhizome, and high sucrose and proline concentrations and low LF concentration in the storage roots. Acclimation traits were generally consistent over years and deviations may have been related to differing temperature profiles. Results indicate that winter survival of asparagus is in part determined by timely fall acclimation allowing plants to survive exposure to early frosts.


2017 ◽  
Vol 27 (6) ◽  
pp. 818-823 ◽  
Author(s):  
William B. Thompson ◽  
Jonathan R. Schultheis ◽  
Sushila Chaudhari ◽  
David W. Monks ◽  
Katherine M. Jennings ◽  
...  

Studies were conducted in North Carolina to determine the effect of holding durations (HDs) [0, 1, 3, 5, and 7 days before planting (DBP)] of ‘Covington’ sweetpotato (Ipomoea batatas) transplants on plant stand and storage root numbers and yield in production fields. In a second field study, the effect of preplant irrigation (PI) treatments (PI and nonirrigation) were evaluated along with the transplant HD on plant stand, storage root numbers, and yield. Transplants held for 7 DBP did not survive as well as the other treatments (lower plant stands) and had lower no. 1, marketable, and total storage root numbers and yields than other holding treatments. HD of 1 or 3 DBP resulted in higher plant stands, and no. 1, marketable, and total numbers of storage roots and yields than holding for 0, 5, or 7 DBP. This study affirms the importance of soil moisture at and shortly after planting for transplant survival and yield. Holding transplants for 1–3 DBP can improve stand establishment and yields when dry conditions occur either before or soon after planting. However, holding transplants for 7 DBP can result in reduced plant stands and yields when stress/dry conditions occur soon after planting.


Plant Disease ◽  
2006 ◽  
Vol 90 (11) ◽  
pp. 1441-1451 ◽  
Author(s):  
C. Corpas-Hervias ◽  
J. M. Melero-Vara ◽  
M. L. Molinero-Ruiz ◽  
C. Zurera-Muñoz ◽  
M. J. Basallote-Ureba

Microbial analysis of asparagus plants (Asparagus officinalis) obtained from four nurseries in Spain in 2002 to 2003 indicated high frequencies of Fusarium proliferatum, F. oxysporum, and F. moniliforme in the rhizomes and storage roots. Out of 201 isolates of Fusarium obtained from nursery crowns and from plants sampled in nine established asparagus fields, the highest frequency of highly pathogenic isolates was observed from samples collected from fields, and included some extremely virulent isolates of F. solani. For isolates of low to moderate virulence, the percentage of those significantly (P = 0.01) associated with root dry weight loss was larger for F. proliferatum (53.8%) than for the other Fusarium species (10.3 to 23.1%). Random amplified polymorphic DNA (RAPD) analysis of 19 isolates of Fusarium spp. grouped all F. proliferatum and F. moniliforme isolates together and, in a second cluster, five of the eight isolates of F. oxysporum. Asparagus cultivars Verde-Morado and Dariana were the least susceptible of 11 cultivars commonly grown in Spain; isolates of F. solani and F. moniliforme proved highly virulent; and a significant interaction was observed among pathogen isolates and asparagus cultivars when representative pathogenic isolates of F. proliferatum, F. oxysporum, F. moniliforme, and F. solani were tested on those cultivars. Larger reductions in root dry weight were associated with F. proliferatum and F. solani than with F. oxysporum and F. moniliforme, and differences in root and stem dry weights among cultivars were significant.


2013 ◽  
Vol 27 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Peter J. Dittmar ◽  
David W. Monks ◽  
Katherine M. Jennings ◽  
Jonathan R. Schultheis

Field studies were conducted to determine the effect of halosulfuron at 0, 13, 26, 39 or 52 g ha−1 applied 10, 22, and 31 d after planting (DAP) on ‘Beauregard' and ‘Covington' sweetpotato. Storage roots were harvested, graded, cured, and stored in controlled environment for 2 mo. Where injury on storage roots was observed, external injury occurred on the surface of the storage root as a blackened area with blistering and internal injury consisted of small red-brown spots inside the sweetpotato storage root. Total yield of sweetpotato with 13 g ha−1 halosulfuron treatment (155,157 kg ha−1) was similar to the nontreated check (162,002 kg ha−1). However, halosulfuron rates above 13 g ha−1 resulted in a reduction of marketable grade roots and total yield of sweetpotato. Regardless of rate and timing of halosulfuron, external and internal injury to Beauregard storage roots was less than 6 and 9%, respectively. No external injury to Covington was observed from all rates of halosulfuron applied POST at 10 DAP. Halosulfuron at 22 DAP to Covington caused greater external injury to storage roots than was observed on the nontreated. Thus, Beauregard appears more tolerant to halosulfuron POST than Covington. To minimize internal or external injury to storage roots of Covington, halosulfuron must be applied within 10 DAP.


2016 ◽  
Vol 141 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Mahmoud Panjtandoust ◽  
David J. Wolyn

Winterhardiness in asparagus (Asparagus officinalis) may be related to proper cold acclimation and induction of freezing tolerance in the fall, levels and maintenance of freezing tolerance in the winter, and the timing of deacclimation in the spring. Premature deacclimation and the inability to reacclimate could result in crown damage from spring freeze-thaw cycles. A field experiment was conducted, replicated over 2 years, to determine how three cultivars with varying adaptation to southern Ontario deacclimate in the spring by assessing LT50 (the temperature at which 50% of plants die) and biochemical and physiological parameters associated with freezing tolerance. ‘UC 157’ (UC), the least-adapted cultivar, deacclimated after soil temperatures rose above freezing; LT50 values increased linearly over time and were unaffected by fluctuations in soil temperature. ‘Jersey Giant’ (JG), a cultivar with moderate adaptation, rapidly deacclimated with increased soil temperature but appeared to partially reacclimate as temperatures decreased. For ‘Guelph Millennium’ (GM), the most-adapted cultivar, LT50 values did not change, maintaining the greatest levels of freezing tolerance during the spring sampling period. Although LT50 values did not differ among cultivars on the first spring sampling date, ranking for freezing tolerance at the final sampling in each year was GM>JG>UC, which is consistent with adaptation. Rhizome traits were most associated with freezing tolerance and included high concentrations of low-molecular-weight fructans (LFs), glucose, and proline and low percentage water and sucrose concentration. Overall, data suggest that the timing of deacclimation and loss of freezing tolerance in the spring may significantly affect winterhardiness; cultivars that lose freezing tolerance early and cannot reacclimate could suffer most from late spring freeze-thaw cycles.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 1921-1924
Author(s):  
Satoru Motoki ◽  
Tianli Tang ◽  
Takumi Taguchi ◽  
Ayaka Kato ◽  
Hiromi Ikeura ◽  
...  

Asparagus is a popular vegetable rich in healthy functional components. Asparagus spears are known to contain a large amount of rutin, which has been found to possess anti-inflammatory, antitumor, and antibacterial/viral properties, and protodioscin, which is an antitumor substance and present in the bottom parts (8 cm from the cut end). However, the process of its production leaves fern in the aboveground parts and roots in the underground parts as significant amounts of nonusable parts, and this issue should be solved. This study was conducted to examine the distributions of rutin and protodioscin, representative functional components in different parts of asparagus. The results suggested that large amounts of rutin were noted in the cladophylls and storage roots (brown and epidermis), and the protodioscin content was high in the buds, the soil-covered section of the spear, and the rhizome. A significant amount of rutin was detected in the aboveground parts, which is consistent with the results of previous studies, but it was also found in the storage roots. The largest amount of protodioscin was found in the buds, as well as in young fruits and seeds of the aboveground parts. Injury by continuously cropping asparagus may be associated with high rutin content in the storage roots of asparagus.


HortScience ◽  
2003 ◽  
Vol 38 (6) ◽  
pp. 1089-1092 ◽  
Author(s):  
A.Q. Villordon ◽  
J.M. Cannon ◽  
H.L. Carroll ◽  
J.W. Franklin ◽  
C.A. Clark ◽  
...  

Yield tests and evaluation of selected storage root and vine characters were conducted among 12 `Beauregard' sweetpotato [Ipomoea batatas (L.) Lam.] mericlones. Maximum yield differences were 43%, 48%, 79%, and 40% for U.S. #1, canners, jumbos, and total marketable yield, respectively. Additive main effect and multiplicative interaction (AMMI) biplot analysis was useful in graphically presenting the yield differences and stability patterns of mericlones. Differences were also detected in vine length, internode diameter, and internode length. Digital image analysis of U.S. #1 storage roots also revealed differences in storage root minor axis length, roundness, and elongation attributes. The results provide valuable information for enhancing current methods of evaluation and selection of mericlones for inclusion in sweetpotato foundation seed programs.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 19 ◽  
Author(s):  
Phanupong Phoncharoen ◽  
Poramate Banterng ◽  
Nimitr Vorasoot ◽  
Sanun Jogloy ◽  
Piyada Theerakulpisut ◽  
...  

Information on the forking, leaf area index, and biomass of cassava for different growing seasons could help design appropriate management to improve yield. The objective was to evaluate the forking date, leaf growth, and storage root yield of different cassava genotypes grown at different planting dates. Four cassava genotypes (Kasetsart 50, Rayong 9, Rayong 11, and CMR38–125–77) were evaluated using a randomized complete block design with four replications. The cassava genotypes were planted on 20 April, 25 May, 30 June, 5 October, 10 November, and 15 December 2015, and 19 May and 3 November 2016. The soil properties prior to the planting, forking date, leaf area index (LAI), dry weights, harvest index (HI), starch content, and weather data were recorded. The forking date patterns for all of the growing seasons varied depending on the cassava genotypes. The weather caused occurring in the first forking for the Rayong 11 and CMR38–125–77 and the second forking for Rayong 11, but not for Kasetsart 50. The forking CMR38–125–77 had a higher LAI, leaf dry weight, biomass, and storage root dry weight than the non-forking Rayong 9. The higher storage root yields in Rayong 9 compared with Rayong 11 were due to an increased partitioning of the storage roots.


2020 ◽  
Vol 100 (4) ◽  
pp. 380-391
Author(s):  
Nic Nolet ◽  
David J. Wolyn

Asparagus (Asparagus officinalis L.) acquires freezing tolerance during a period of fall acclimation when both photoperiod and temperature decrease. The above-ground vegetative growth may be important for sensing changing environmental conditions and translocating compounds to the below-ground crown. Defoliation experiments, repeated over 2 yr, were conducted by removing fern in mid-August, -September, and -October and evaluating crown metabolites and LT50, the temperature at which 50% of plants die, at monthly intervals to mid-November. Spring emergence and vigor were also assessed in separate experiments. In the first year, only mid-August defoliation affected LT50 values, decreasing freezing tolerance, which was associated with diminished rhizome proline concentration and storage root low- and high-molecular-weight fructan concentrations. All defoliation treatments in the second year decreased LT50 values, or increased freezing tolerance, possibly resulting from an interaction between defoliation and drought which increased rhizome sucrose concentrations. Defoliation decreased spring vigor in both experiments; the response was proportional to the earliness of the treatment and associated with rhizome and storage root fructan levels. Crowns of plants defoliated in mid-August had increasing proline concentrations during the fall, similar to control plants, suggesting the below-ground organs may have sensed soil temperature to cold acclimate. Autumn defoliation to control disease, harvest seed, or implement other cultural practices can reduce vigor and likely attenuate long-term performance of a plantation.


Sign in / Sign up

Export Citation Format

Share Document