scholarly journals Exogenous Application of Melatonin Improves Drought Tolerance in Coffee by Regulating Photosynthetic Efficiency and Oxidative Damage

2021 ◽  
Vol 146 (1) ◽  
pp. 24-32
Author(s):  
Sylvia Cherono ◽  
Charmaine Ntini ◽  
Misganaw Wassie ◽  
Mohammad Dulal Mollah ◽  
Mohammad A. Belal ◽  
...  

The protective role of melatonin in plants under abiotic stress has been reported, but little information is available on its mitigation effect on coffee (Coffea arabica) plants. The objective of this study was to determine the effect of exogenous application of 100 µM melatonin in coffee leaves under 3 months of drought stress treatment. Melatonin was found to alleviate the drought-induced damage in coffee through reducing the rate of chlorophyll degradation, electrolyte leakage, malonaldehyde content, and activating various antioxidant enzymes, such as catalase, guaiacol peroxidase, and superoxide dismutase. Melatonin application suppressed the expression of chlorophyll degradation gene PAO encoding pheophorbide a oxygenase, and upregulated the expression of photosynthetic gene RBCS2 encoding ribulose-1,5-bisphosphate oxygenase (Rubisco) protein, and a drought-related gene AREB encoding abscisic acid-responsive element binding protein. The photosynthetic efficiency of photosystem II under dark adaptation was also improved upon melatonin application in drought-stressed plants. Our results showed that both foliar spray and direct soil application of melatonin could improve drought tolerance by regulating photosynthetic efficiency and oxidative damage in C. arabica seedlings. This study provides insights in application of melatonin as a protective agent against drought stress in improvement of crop yields.

2007 ◽  
Vol 33 (6) ◽  
pp. 397-409
Author(s):  
Glynn Percival ◽  
Ali Mohammed Salim AlBalushi

The influence of paclobutrazol (PBZ) applied as a foliar spray and root drench on drought tolerance and recovery from drought, of containerized English and evergreen oak was investigated. PBZ treatment induced a suite of physiological adaptations that would allow both species to tolerate drought; more specifically, increased total leaf content of carotenoids (lutein:β-carotene:neoxanthin:α-carotene) and xanthophylls (zeaxanthin:antheraxanthin:violaxanthin), chlorophylls, proline, superoxide dismutase, and catalase. In addition, PBZ strengthened leaf membrane integrity and increased leaf photosynthetic efficiency and light-induced CO 2fixation before and at the cessation of the drought treatment. Irrespective of species, recovery rates of droughted trees treated with PBZ were 20% to 50% higher than non-PBZ-treated trees. In all cases, control trees (non-PBZ-treated) had the least capacity for recovery. Application of some of the PBZ treatments induced overregulation of newly emerged leaves. Results of this investigation indicate applications of the growth inhibitor PBZ either as a foliar spray or root drench induce a suite of physiological adaptations that confer a useful degree of drought tolerance and aid in the recovery from drought-induced damage. It is suggested that PBZ-induced protection of both English and evergreen oak from damage caused by drought stress is mediated by increased antioxidant enzyme and pigment activities.


2018 ◽  
Vol 19 (12) ◽  
pp. 4020 ◽  
Author(s):  
Xinbo Wang ◽  
Yanhua Xu ◽  
Jingjing Li ◽  
Yongzhe Ren ◽  
Zhiqiang Wang ◽  
...  

Drought is a major adversity that limits crop yields. Further exploration of wheat drought tolerance-related genes is critical for the genetic improvement of drought tolerance in this crop. Here, comparative proteomic analysis of two wheat varieties, XN979 and LA379, with contrasting drought tolerance was conducted to screen for drought tolerance-related proteins/genes. Virus-induced gene silencing (VIGS) technology was used to verify the functions of candidate proteins. A total of 335 differentially abundant proteins (DAPs) were exclusively identified in the drought-tolerant variety XN979. Most DAPs were mainly involved in photosynthesis, carbon fixation, glyoxylate and dicarboxylate metabolism, and several other pathways. Two DAPs (W5DYH0 and W5ERN8), dubbed TaDrSR1 and TaDrSR2, respectively, were selected for further functional analysis using VIGS. The relative electrolyte leakage rate and malonaldehyde content increased significantly, while the relative water content and proline content significantly decreased in the TaDrSR1- and TaDrSR2-knock-down plants compared to that in non-knocked-down plants under drought stress conditions. TaDrSR1- and TaDrSR2-knock-down plants exhibited more severe drooping and wilting phenotypes than non-knocked-down plants under drought stress conditions, suggesting that the former were more sensitive to drought stress. These results indicate that TaDrSR1 and TaDrSR2 potentially play vital roles in conferring drought tolerance in common wheat.


Silicon ◽  
2021 ◽  
Author(s):  
Muhammad Farman ◽  
Fahim Nawaz ◽  
Sadia Majeed ◽  
Hafiz Muhammad Rashad Javeed ◽  
Muhammad Ahsan ◽  
...  

AbstractThe present study evaluated the effect of silicon (Si) seed priming and sulfur (S) foliar spray on drought tolerance of two contrasting maize hybrids viz. drought tolerant Hi-Corn 11 and susceptible P-1574. The maize seeds were primed with (3 mM Na2SiO3) or without Si (hydropriming) and later sown in pots filled with sandy loam soil. Drought stress (25–30% water holding capacity or WHC) was initiated at cob development stage (V5) for two weeks, whereas the well-watered plants were grown at 65–70% WHC. On appearance of drought symptoms, foliar spray of S was done using 0.5% and 1.0% (NH4)2SO4, whereas water spray was used as a control. The drought-stressed plants were grown for further two weeks at 25–30% WHC before the final harvest. The results showed a marked effect of Si seed priming and foliar S spray on biomass, physiological and enzymatic processes as well as macronutrient concentrations of maize. In comparison to control, the highest increase in leaf relative water content (25%), chlorophyll a content (56%), carotenoids (26%), photosynthetic rate (64%), stomatal conductance (56%) and intercellular CO2 concentration (48%) was observed by Si seed priming + S foliar spray (Si + S) under water deficit conditions. Also, Si + S application stimulated the activity of catalase (45%), guaiacol peroxidase (38%) and superoxide dismutase (55%), and improved NPK concentrations (40–63%) under water limitations. Our results suggest that Si seed priming + foliar spray of S is more effective than the individual application of these nutrients to enhance drought tolerance in maize.


2017 ◽  
Vol 50 (4) ◽  
pp. 65-73 ◽  
Author(s):  
N. Sarwar ◽  
O. Farooq ◽  
K. Mubeen ◽  
A. Wasaya ◽  
W. Nouman ◽  
...  

AbstractDrought stress creates imbalance or deficiency of some growth regulators in plants, which leads toward reduced crop yield. Gibberellic acid is one of the most important growth regulators in plants, which improve drought tolerance in plants under optimum concentration. A field experiment was conducted under exogenous application of gibberellic acid under normal or drought condition and with or without gibberellic acid application. Crop growth and yield parameters were assesses during the experimentation. Study revealed that crop reduced growth in term of leaf area index (LAI), leaf area duration (LAD), crop growth rate (CGR), net assimilation rate (NAR) and total dry matter (TDM) under drought condition, while these parameters were improved with gibberellic acid application. Similary, improved growth rate resulted in better performance of yield attributes (cob length, cob diameter, grains per cob, grain weight and yield). Gibberellic acid application improved the crop performance at optimum irrigation, as well as under reduced irrigation. Although highest crop yield was recorded with gibberellic acid application under optimum irrigation level, while its application under drought stress improved crop tolerance and resulted in better crop yield, similar to optimum irrigation level. Exogenous application of gibberellic acid not only improved the drought tolerance in maize, but also increased the crop yield under normal condition.


Author(s):  
Bilal Ahamid Shafiq ◽  
Fahim Nawaz ◽  
Sadia Majeed ◽  
Muhammad Aurangzaib ◽  
Abdullah Al Mamun ◽  
...  

AbstractThe challenging impact of drought to agricultural productivity requires the adoption of mitigation strategies with a better understanding of underlying mechanisms responsible for drought tolerance. The present study aimed at investigating the effects of sulfur-based fertilizers on mitigation of drought stress in sunflower. Sulfate-containing fertilizers, viz., ammonium sulfate, zinc sulfate, magnesium sulfate, potassium sulfate, and gypsum, were initially evaluated at two different rates (10 and 20 mg kg−1 soil equivalent to 20 and 40 kg ha−1, respectively) for nutrient uptake and growth-promoting traits in sunflower seedlings (cv. Hysun-33). The best performing fertilizer (gypsum) was then selected to evaluate the response of sunflower under drought stress imposed at flowering stage for three weeks (25–30% water holding capacity). Results indicated significant amelioration of drought stress with higher activity of photosynthetic apparatus, upregulation of antioxidative enzymes, and increased achene yield by gypsum application. In comparison to control, gypsum-treated plants (20 mg kg−1 soil) exhibited higher water status (32%), leaf photosynthetic rate (29%), transpiration rate (67%), and stomatal conductance (118%) under drought stress. The antioxidant enzyme activities of catalase, guaiacol peroxidase, and superoxide dismutase were also increased by 67%, 62%, and 126%, respectively, resulting in higher achene yield (19%) under water-deficit conditions. This study indicates that the application of sulfur-based fertilizers (gypsum) can be used to induce drought tolerance and obtain high sunflower yields under drought stress, and furthermore, it is a cost-effective strategy resulting in high benefit–cost ratio with respect to no gypsum application.


2021 ◽  
Vol 22 (11) ◽  
pp. 5517
Author(s):  
Xin Jia ◽  
Xiaoqing Gong ◽  
Xumei Jia ◽  
Xianpeng Li ◽  
Yu Wang ◽  
...  

Water deficit adversely affects apple (Malus domestica) productivity on the Loess Plateau. Autophagy plays a key role in plant responses to unfavorable environmental conditions. Previously, we demonstrated that a core apple autophagy-related protein, MdATG8i, was responsive to various stresses at the transcript level. Here, we investigated the function of this gene in the response of apple to severe drought and found that its overexpression (OE) significantly enhanced drought tolerance. Under drought conditions, MdATG8iOE apple plants exhibited less drought-related damage and maintained higher photosynthetic capacities compared with the wild type (WT). The accumulation of ROS (reactive oxygen species) was lower in OE plants under drought stress and was accompanied by higher activities of antioxidant enzymes. Besides, OE plants accumulated lower amounts of insoluble or oxidized proteins but greater amounts of amino acids and flavonoid under severe drought stress, probably due to their enhanced autophagic activities. Particularly, MdATG8iOE plants showed higher root hydraulic conductivity than WT plants did under drought conditions, indicating the enhanced ability of water uptake. In summary, the overexpression of MdATG8i alleviated oxidative damage, modulated amino acid metabolism and flavonoid synthesis, and improved root water uptake, ultimately contributing to enhanced drought tolerance in apple.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1502
Author(s):  
Makoena Joyce Moloi ◽  
Rouxlene van der Merwe

Severe drought stress affects the production of vegetable-type soybean (Glycine max L. Merrill), which is in infancy for Africa despite its huge nutritional benefits. This study was conducted under controlled environmental conditions to establish the effects of severe drought stress on ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR) activities as well as proline, total soluble sugars (TSS), and hydrogen peroxide (H2O2) contents of five vegetable-type soybean cultivars (UVE8, UVE14, UVE17, AGS354, AGS429) at flowering and pod-filling stages. Drought induced significant increases in the contents of proline (selectively at pod filling for AGS429), TSS (at both stages for AGS429, and only at pod filling for UVE14), and malondialdehyde (AGS354 at flowering; UVE17 at pod filling). UVE8 and AGS354 had the highest H2O2 levels at flowering under drought stress, while AGS429 had the lowest. However, AGS429 was the only cultivar with significantly increased H2O2 under drought stress. Furthermore, drought stress induced significant increases in APX, GPX, and GR activities at flowering for AGS429. AGS354 recorded the highest decline for all antioxidative enzymes, while UVE17 decreased for GPX only. All biochemical parameters, except H2O2, were significantly higher at pod filling than at the flowering stage. The relationship between H2O2 and total seed mass (TSMP) or total seed per plant (TSP) was significantly positive for both stages, while that of TSS (at flowering) and proline (at pod filling) were significantly related to total pods per plant (TPP). The study suggests that during drought, the tolerance responses of vegetable-type soybean, APX, GPX, and GR (especially at the flowering stage), function in concert to minimize H2O2 production and lipid peroxidation, thereby allowing H2O2 to function in the signaling events leading to the induction of drought tolerance. The induction of TSS at flowering and proline at pod filling is important in the drought tolerance response of this crop.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582095680
Author(s):  
Iqbal Hussain ◽  
Rizwan Rasheed ◽  
Muhammad Arslan Ashraf ◽  
Muhammad Mohsin ◽  
Syed Muhammad Ali Shah ◽  
...  

The exogenous application of acetylsalicylic acid (ASA) is stated to increase tolerance of plants against different environmental stresses. Therefore, the present study was planned to get insight into ASA-mediated regulation of growth, secondary metabolism, and oxidative defense in 2 chickpea varieties. Ten seeds of 2 chickpea varieties (DG-89 and Bittle-98) were sown in plastic pots containing sandy loam soil with 3 drought stress levels, i.e. wet conditions or flooded water (100% FC) as recommended control, 75% FC, 50% FC and 25% FC for chickpea. The moisture contents were maintained and regularly monitored through the addition of normal irrigation water. The design of experimental was completely randomized with 3 replicates per treatment. Penultimate leaves were harvested with knife after 20 days of foliar spray to observe the effect of exogenously applied ASA (100 mg/L) on growth, and key-biochemical attributes of chickpea plants (DG-89 and Bittle-98) under drought stress regimes. Drought stress regimes caused a substantial decline in shoot (37% and 35%) and root length (67% and 78%), shoot (80% and 76%) and root (62% and 68%) fresh masses, shoot (71% and 63%) and root (77% and 74%) dry masses, leaf area per plant (77% and 80%), chlorophyll a (7% and 45%), chlorophyll b (57% and 42%), total chlorophyll (30% and 39%), total carotenoids (76% and 54%), total anthocyanins (38%), reducing sugar (10% and 57%), total soluble proteins (77% and 44%), total flavonoids (61% and 59%) and total phenolics (58% and 31%) contents in both DG-89 and Bittle-98, respectively. A significant increase in MDA (25%), H2O2 contents (100% and 62%), proline (145% and 131%), and ascorbic acid (133% and 203%) contents was documented in stressed plants of both varieties, respectively. Additionally, drought stress significantly improved the activities of POD (154% and 76%), CAT (87% and 45%) and SOD (248% and 143%) in both varieties. Exogenous application of ASA reduced drought-mediated oxidative stress by reducing MDA (53% and 14%), and H2O2 (84% and 56%) contents, proline contents (50% and 17%) and enhanced the shoot (6% and 25%) and root (43% and 33%) dry masses, leaf area (9% and 10%), chlorophyll a (7% and 32%), b (82% and 81%), and carotenoids (53% and 33%) in both barley cultivars. When plants of chickpea was treated with ASA had greater total anthocyanins (26% and 35%), free amino acids (48% and 28%), ascorbic acid contents (135% and 179%), total soluble proteins (34% and 23%), total flavonoids (58% and 35%) and phenolic (50% and 69%)contents besides the POD (41% and 64%), CAT (23% and 56%) and SOD (73% and 72%) enzymes activities. Plants of DG-89 showed more tolerance to drought stress than that of Bittle-98 as a manifest from higher plant biomasses. Thus, our results showed that foliar-applied ASA is an effective strategy that can be used to improve the tolerance of chickpea plants to drought stress.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254908
Author(s):  
Sameer Joshi ◽  
Emily Thoday-Kennedy ◽  
Hans D. Daetwyler ◽  
Matthew Hayden ◽  
German Spangenberg ◽  
...  

Drought is one of the most severe and unpredictable abiotic stresses, occurring at any growth stage and affecting crop yields worldwide. Therefore, it is essential to develop drought tolerant varieties to ensure sustainable crop production in an ever-changing climate. High-throughput digital phenotyping technologies in tandem with robust screening methods enable precise and faster selection of genotypes for breeding. To investigate the use of digital imaging to reliably phenotype for drought tolerance, a genetically diverse safflower population was screened under different drought stresses at Agriculture Victoria’s high-throughput, automated phenotyping platform, Plant Phenomics Victoria, Horsham. In the first experiment, four treatments, control (90% field capacity; FC), 40% FC at initial branching, 40% FC at flowering and 50% FC at initial branching and flowering, were applied to assess the performance of four safflower genotypes. Based on these results, drought stress using 50% FC at initial branching and flowering stages was chosen to further screen 200 diverse safflower genotypes. Measured plant traits and dry biomass showed high correlations with derived digital traits including estimated shoot biomass, convex hull area, caliper length and minimum area rectangle, indicating the viability of using digital traits as proxy measures for plant growth. Estimated shoot biomass showed close association having moderately high correlation with drought indices yield index, stress tolerance index, geometric mean productivity, and mean productivity. Diverse genotypes were classified into four clusters of drought tolerance based on their performance (seed yield and digitally estimated shoot biomass) under stress. Overall, results show that rapid and precise image-based, high-throughput phenotyping in controlled environments can be used to effectively differentiate response to drought stress in a large numbers of safflower genotypes.


2020 ◽  
Vol 21 (3) ◽  
pp. 772 ◽  
Author(s):  
Salah E. Abdel-Ghany ◽  
Fahad Ullah ◽  
Asa Ben-Hur ◽  
Anireddy S. N. Reddy

Drought is a major limiting factor of crop yields. In response to drought, plants reprogram their gene expression, which ultimately regulates a multitude of biochemical and physiological processes. The timing of this reprogramming and the nature of the drought-regulated genes in different genotypes are thought to confer differential tolerance to drought stress. Sorghum is a highly drought-tolerant crop and has been increasingly used as a model cereal to identify genes that confer tolerance. Also, there is considerable natural variation in resistance to drought in different sorghum genotypes. Here, we evaluated drought resistance in four genotypes to polyethylene glycol (PEG)-induced drought stress at the seedling stage and performed transcriptome analysis in seedlings of sorghum genotypes that are either drought-resistant or drought-sensitive to identify drought-regulated changes in gene expression that are unique to drought-resistant genotypes of sorghum. Our analysis revealed that about 180 genes are differentially regulated in response to drought stress only in drought-resistant genotypes and most of these (over 70%) are up-regulated in response to drought. Among these, about 70 genes are novel with no known function and the remaining are transcription factors, signaling and stress-related proteins implicated in drought tolerance in other crops. This study revealed a set of drought-regulated genes, including many genes encoding uncharacterized proteins that are associated with drought tolerance at the seedling stage.


Sign in / Sign up

Export Citation Format

Share Document