scholarly journals Artificial Shading Can Adversely Affect Heat-tolerant Lettuce Growth and Taste, with Concomitant Changes in Gene Expression

2022 ◽  
Vol 147 (1) ◽  
pp. 45-52
Author(s):  
Camila M.L. Alves ◽  
Hsueh-Yuan Chang ◽  
Cindy B.S. Tong ◽  
Charlie L. Rohwer ◽  
Loren Avalos ◽  
...  

Shading has been used to produce high-quality lettuce (Lactuca sativa) in locations where production conditions are not optimal for this cool-season crop. To learn what additional benefits shading provides if heat-tolerant cultivars are used and to understand the effects of shading on growth, sensory quality, chemical content, and transcriptome profile on heat-tolerant lettuce, we grew two romaine lettuce cultivars with and without shading using 50% black shadecloth in 2018 and 2019. Shading reduced plant leaf temperatures, lettuce head fresh weights, glucose and total sugars content, and sweetness, but not bitterness, whereas it increased lettuce chlorophyll b content compared with unshaded controls. Transcriptome analyses identified genes predominantly involved in chlorophyll biosynthesis, photosynthesis, and carbohydrate metabolism as upregulated in unshaded controls compared with shaded treatments. For the tested cultivars, which were bred to withstand high growing temperatures, it may be preferable to grow them under unshaded conditions to avoid increased infrastructure costs and obtain lettuce deemed sweeter than if shaded.

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 313
Author(s):  
Georgios A. Soteriou ◽  
Youssef Rouphael ◽  
Maria G. Emmanouilidou ◽  
Chrystalla Antoniou ◽  
Angelos C. Kyratzis ◽  
...  

Foliar application of a vegetal-derived protein hydrolysate as a biostimulant was assessed for possible interaction with the ripening of diploid watermelon grafted onto interspecific hybrid rootstock. Assessment encompassed crop performance; fruit morphometric and sensory quality traits; soluble carbohydrates; macrominerals; and bioactive composition at 10, 20, 30, 40, and 50 days post anthesis (dpa). The biostimulant effect on yield components was confounded by the vigorous rootstock effect. Pulp firmness declined precipitously with cell enlargement from 10 to 30 dpa, and the biostimulant phyto-hormonal potential on firmness and rind thickness was masked by grafting. Pulp colorimetry was determined solely by ripening and peaked at 40 dpa. The biostimulant effect reduced lycopene content by 8% compared to the control. Total sugars coevolved with soluble solids content, peaked at 30 dpa, and then stabilized. Fructose and glucose prevailed during rapid fruit growth from 10 to 30 dpa and sucrose prevailed at advanced ripeness between 40–50 dpa, whereas acidity peaked at 20 dpa and then decreased. Potassium, which was the most abundant micromineral, peaked before full ripeness at 30 dpa. The biostimulant effect on the watermelon fruit ripening process is not granted, at least regarding the conditions this study was carried out under. The absence of biostimulant effect might relate to rootstock vigorousness, the grafted watermelon physiology, or the type of biostimulant used.


Author(s):  
Vicente M. Gomez-Lopez ◽  
Maria E. Buitrago, Amaury Martínez-Yepez

Passion fruit juice (PFJ) is very susceptible to thermal degradation and may benefit from processing by non-thermal methods such as sonication. This study pursued to test the effect of sonication on sensory quality and related chemical compounds of PFJ during refrigerated storage. Treatment conditions were those of a previous study where a microbiologically stable PFJ was achieved. The effect of ultrasound (20 kHz, 263 W, 89.25 µm) on sensory quality, ºBrix, total titratable acidity (TTA), ºBrix/TTA and reducing and total sugars of PFJ during storage at 4 ºC up to 10 days was studied. Sonication did not cause significant (P>0.05) effects on TTA, ºBrix/TTA and reducing sugars but significantly (P<0.05) increased ºBrix and total sugars content. Panel scored sonication PFJ significantly (P<0.05) lower in colour, flavour and aroma scores; but the global acceptance was similar (P>0.05) than that of non-sonicated juice. Results indicate that sonication of PFJ is a treatment that does not affect the global sensory quality of the product.


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1398-1403 ◽  
Author(s):  
Guangyao Wang ◽  
Mathieu Ngouajio ◽  
Milton E. McGiffen ◽  
Chad M. Hutchinson

The effect of summer cover crop and management system on subsequent fall romaine lettuce (Lactuca sativa L.) and spring muskmelon (Cucumis melo L.) growth and yield was evaluated in the Coachella Valley of California from 1999 to 2003. Cover crop treatments included: 1) cowpea [Vigna unguiculata (L.) Walp.] incorporated into the soil in the fall (CPI), 2) cowpea used as mulch in the fall (CPM), 3) sudangrass [Sorghum bicolor (L) Moench] incorporated into the soil in the fall (SGI), and 4) a bare ground control (BG). Management system treatments included: 1) conventional system (CON), 2) integrated crop management (ICM), and 3) organic system (ORG). Cowpea cover crop, either incorporated or used as surface mulch, increased lettuce growth and yield by increasing biomass allocation to lettuce leaf and leaf area growth. Cowpea mulch decreased muskmelon leaf and biomass growth and reduced muskmelon yield. Sudangrass produced more biomass than cowpea and reduced lettuce growth and yield. However, in the following spring, the SGI treatment had the highest muskmelon yield. Lettuce growth was significantly affected by management system, while muskmelon growth at the early stage was unaffected. The organic system reduced both lettuce and muskmelon yield compared with CON and ICM management systems.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Zhang ◽  
Hui Li ◽  
Yiwei Jiang ◽  
Huibin Li ◽  
Zhipeng Zhang ◽  
...  

Abstract Background Identification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species. The objectives of this study were to determine genetic variations in heat tolerance associated with phenotypic and physiological traits and to identify molecular markers associated with heat tolerance in a diverse collection of perennial ryegrass (Lolium perenne L.). Results Plants of 98 accessions were subjected to heat stress (35/30 °C, day/night) or optimal growth temperature (25/20 °C) for 24 d in growth chambers. Overall heat tolerance of those accessions was ranked by principal component analysis (PCA) based on eight phenotypic and physiological traits. Among these traits, electrolyte leakage (EL), chlorophyll content (Chl), relative water content (RWC) had high correlation coefficients (− 0.858, 0.769, and 0.764, respectively) with the PCA ranking of heat tolerance. We also found expression levels of four Chl catabolic genes (CCGs), including LpNYC1, LpNOL, LpSGR, and LpPPH, were significant higher in heat sensitive ryegrass accessions then heat tolerant ones under heat stress. Furthermore, 66 pairs of simple sequence repeat (SSR) markers were used to perform association analysis based on the PCA result. The population structure of ryegrass can be grouped into three clusters, and accessions in cluster C were relatively more heat tolerant than those in cluster A and B. SSR markers significantly associated with above-mentioned traits were identified (R2 > 0.05, p < 0.01)., including two pairs of markers located on chromosome 4 in association with Chl content and another four pairs of markers in association with EL. Conclusion The result not only identified useful physiological parameters, including EL, Chl content, and RWC, and their associated SSR markers for heat-tolerance breeding of perennial ryegrass, but also highlighted the involvement of Chl catabolism in ryegrass heat tolerance. Such knowledge is of significance for heat-tolerance breeding and heat tolerance mechanisms in perennial ryegrass as well as in other cool-season grass species.


2020 ◽  
Author(s):  
Jing Zhang ◽  
Hui Li ◽  
Yiwei Jiang ◽  
Huibin Li ◽  
Zhipeng Zhang ◽  
...  

Abstract Background: Identification of genetic diversity in heat tolerance and associated traits is of great importance for improving heat tolerance in cool-season grass species. The objectives of this study were to determine genetic variations in heat tolerance associated with phenotypic and physiological traits and to identify molecular markers associated with heat tolerance in a diverse collection of perennial ryegrass (Lolium perenne L.).Results: Plants of 98 accessions were subjected to heat stress (35/30 ℃, day/night) or optimal growth temperature (25/20 ℃) for 24 d in growth chambers. Overall heat tolerance of those accessions was ranked by principal component analysis (PCA) based on eight phenotypic and physiological traits. Among these traits, electrolyte leakage (EL), chlorophyll content (Chl), relative water content (RWC) had high correlation coefficients (−0.858, 0.769, and 0.764, respectively) with the PCA ranking of heat tolerance. We also found expression levels of four Chl catabolic genes (CCGs), including LpNYC1, LpNOL, LpSGR, and LpPPH, were significant higher in heat sensitive ryegrass accessions then heat tolerant ones under heat stress. Furthermore, 66 pairs of simple sequence repeat (SSR) markers were used to perform association analysis based on the PCA result. The population structure of ryegrass can be grouped into three clusters, and accessions in cluster C were relatively more heat tolerant than those in cluster A and B. SSR markers significantly associated with above-mentioned traits were identified (R2>0.05, p <0.01)., including two pairs of markers located on chromosome 4 in association with Chl content and another four pairs of markers in association with EL.Conclusion: The result not only identified useful physiological parameters, including EL, Chl content, and RWC, and their associated SSR markers for heat-tolerance breeding of perennial ryegrass, but also highlighted the involvement of Chl catabolism in ryegrass heat tolerance. Such knowledge is of significance for heat-tolerance breeding and heat tolerance mechanisms in perennial ryegrass as well as in other cool-season grass species.


2009 ◽  
Vol 134 (5) ◽  
pp. 511-520 ◽  
Author(s):  
Kemin Su ◽  
Dale J. Bremer ◽  
Richard Jeannotte ◽  
Ruth Welti ◽  
Celeste Yang

Cool-season turfgrasses may experience heat stress during summer. Hybrid bluegrasses (HBGs), crosses between kentucky bluegrass [KBG (Poa pratensis L.)] and native texas bluegrass (Poa arachnifera Torr.), have improved heat tolerance but the mechanisms of heat tolerance are poorly understood. Our objectives were to quantitatively profile membrane lipid molecular species in three cool-season turfgrasses exposed to optimal (22/15 °C, 14/10 h light/dark) and supra-optimal temperatures (35/25 °C and 40/30 °C, 14/10 h light/dark). Grasses included a low heat-tolerant tall fescue [TF (Festuca arundinacea Schreb. ‘Dynasty’)], a mid-heat–tolerant KBG (‘Apollo’), and a heat-tolerant HBG (‘Thermal Blue’). At high temperature, glycolipid digalactosyldiacylglycerol (DGDG) in HBG was 12% and 16% greater than in KBG and TF, respectively, and the ratio DGDG to monogalactosyldiacylglycerol was 19% and 44% greater in HBG than in KBG and TF, respectively. Greater heat tolerance in HBG and KBG was associated with higher contents of phosphatidylethanolamine and phosphatidylglycerol, and with reduced overall unsaturation compared with TF. Overall, 20 lipid molecular species were present in greater amounts and another 20 species in lesser amounts in HBG and KBG than in TF. Results suggest 40 membrane lipid molecules are potential biomarkers for heat tolerance and that compositional changes in membrane lipids in response to heat contribute to differences in heat tolerance among cool-season grasses.


2016 ◽  
Vol 54 (2) ◽  
pp. 198 ◽  
Author(s):  
Dao Nhat Quang ◽  
Vu Thi Huong ◽  
Hoang Quoc Tuan

The main objective of this study was to investigate the effect of different temperature of hot air drying on the qualities of ginger powder included chemical content, colour parameters and colour sensory quality. The drying experiments were carried out at four air temperature of 50, 60, 70 and 80oC. The colour parameters for colour change of the materials were quantified by the Hunter L (whiteness/darkness), a (redness/greenness) and b (yellowness/blueness) system. These values were also used for calculation of total change (DE). A consumer preference test was conducted with 80 consumers to assess the colour quality of 04 ginger powders. The results showed that the decreasing of essential oils content at low drying temperature is higher than at high temperature. While the fats content was significantly decreased during drying at high temperature as compared with low temperature due to oxidation process of fat occurring at high temperature. The ginger powder was dried at high temperature showed a highly reduced content of protein and carbohydrate. Least Squares regression was used to determine the relationship between colour sensory scores of consumer taster and quantification of three Hunter parameters. In that, variable “L” and “b” could be distributed to increasing while variable “a” contributory decrease the colour quality of ginger powder products. The zero-order, first-order and quadratic models were used to explain the colour change kinietics during hot drying ginger slices at 50oC and it was observed that L, b and a were fitted to quadratic model.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 513
Author(s):  
Yi Yang ◽  
Daodong Pan ◽  
Ying Wang ◽  
Jun He ◽  
Yi Yue ◽  
...  

Stewed pork-hock in soy sauce (SPHSS) is a cuisine that is stewed in broth with abundant taste-active compounds. Broth plays an important role in determining the meat taste. In order to promote the comprehensive utilization of the broth we treated it by spray drying, and secondary processed it into reconstituted broth. Two new products: SPH (stewed pork-hock with reconstituted broth) and MRPH (marinated and roasted pork-hock with reconstituted broth) were processed. Their metabolome consisted of amino acids, sugars, organic acids, nucleic acids and their derivatives. PC1 and PC2 explained a total of 63.07% and 35.31% of the variation, respectively. All the metabolite levels in SPH were higher than those in SPHSS, except for histidine and phosphorylcholine. SPH kept the highest levels of total FAAs and total sugars, which corresponded to the highest score of overall taste in the three products. These results demonstrated that reconstituted broth can promote the metabolite concentration in and improve the taste of pork-hock. Compared with marinating and roasting, reconstituted broth was more suitable for stewing pork-hock. This study preliminarily explored a feasible method to comprehensively utilize the surplus broth in food processing. SPH with a shortened processing time by a reconstituted broth have potential application in the industry due to the high concentrations of taste metabolites.


Sign in / Sign up

Export Citation Format

Share Document