scholarly journals Issues of resource and energy saving in corundum production

2021 ◽  
Vol 24 (6) ◽  
pp. 1347-1356
Author(s):  
P. S. Palyanicin ◽  
P. A. Petrov ◽  
V. Yu. Bazhin

The purpose of this article is study and identification of the most promising trends and engineering solutions in order to improve resource saving and energy efficiency in the production of corundum on the basis of the conducted patent review on melting improvement and optimization. The ways to optimize the corundum production are considered in three directions from the point of view of energy saving. The first direction relates to the development of promising engineering developments. The latter are studied to select rational operating modes and determine the main factors affecting voltage surges during the technological process and useful product yield. Consideration is given to the conditions for reducing specific energy consumption and improvement of production environmental friendliness at all stages beginning from isothermal sintering of corundum, production of electrocorundum, fine corundum to single corundum crystals. The second direction is the optimization of corundum production at all stages for the development of an optimal control algorithm for the technological process. In this case the electricity consumption might be reduced by 10-12% as compared to current standards. The third direction is the development of engineering solutions involving the change of individual structural units of furnaces, namely, the use of modern components and new heat insulating materials, as well as the application of spent heat carriers as the sources of secondary energy resources and the introduction of additional controllers of the automated control system of the process. The analytical study has shown that the result of optimization should be upgraded designs of plants and electrical equipment, which can provide maximum electrochemical efficiency, and corresponding furnace tightness. Criteria for energy supply and energy quality making possible to stabilize furnace material balance and solve resource saving issues have been developed. These measures allow to reduce the loss of raw materials up to 20-25%, the specific energy consumption under the production of corundum by 2-3 thousand kWh per 1 t.

2021 ◽  
Vol 51 (2) ◽  
pp. 395-401
Author(s):  
Vladimir Kharitonov ◽  
Vladimir Asafov ◽  
Pavel Kuznetsov ◽  
Valentina Gabrielova

Introduction. One of the promising methods in the production of dairy and other food in concentrated, condensed and dry forms is a consistent combination of dehydration methods. The subject of this research relevant now is approaches to the calculation of such processes. The work objective is to analyze the dehydration staging effect on the energy consumption in this process. Study objects and methods. Liquid, concentrated and powdered dairy products: whole and skim milk, milk whey, whole milk substitutes, as well as their dehydration parameters at certain stages. The determination of moisture and solids mass fraction in products was carried out with a standard method. Results and discussion. The feasibility of using a multi-stage dehydration method for the production of various types of powder milk products has been justified. The characteristic boundaries of solids mass fraction at different stages of the process were determined. The material-balance equation made it possible to define the formula for the total specific energy consumption relative to the unit of the final dry product at an arbitrary number of dehydration stages. The paper contains examples of a comparative efficiency assessment of the dehydration process carried out at different stages from the point of view of energy costs of its implementation. Conclusion. The research featured various issues related to the use of dehydration methods in the production of milk powder products. An equation has been drawn up to estimate the specific energy consumption of the multi-stage dehydration process relative to a unit of the final dry product. The use of a multi-stage process allows to effectively reduce the specific energy consumption, as well as to generate new high quality products.


Author(s):  
Valery Glebovich Larionov ◽  
Marina Gennad'evna Treyman

The article gives the analysis of resource saving and energy efficiency of the enterprises of water supply and waste water services of the State Unitary Enterprise “St. Petersburg Vodokanal”. There has been evaluated the consumption of electrical energy by the enterprise. The main methods of energy resources management (creating a system of rational consumption and saving of energy resources, using energy-efficient materials, equipment and technologies, identifying the potential of energy-saving measures at operating facilities) have been determined. The priority directions for reducing the production energy intensity in the water supply processes have been defined. An algorithm is proposed that includes the processes of collecting, modeling, structuring information, as well as developing an optimal solution for an enterprise. A model for optimizing work in water supply processes is presented, software products are considered that allow to control the processes of energy saving and energy efficiency. The most promising software products for their introducing them into practice of the enterprise have been identified, including General Electric Intelligent Platforms CSense. A plan for the sequential implementation of the software product into operation at the enterprise is presented. The dynamics of electricity consumption at the enterprise, the structure of energy consumption are illustrated. It is noted that the most significant contribution to the amount of energy consumption is made by the technological processes of water intake and supply. It has been substantiated that the most energy-consuming process for the enterprise (Water Supply Branch of the State Unitary Enterprise St. Petersburg Vodokanal) is replacement or maintenance of pumping equipment. The components of energy conservation of the enterprise under study are the partial regulation and automation of processes.


Author(s):  
A. I. Zavgorodniy ◽  
A. P. Paliy ◽  
B. T. Stegniy ◽  
S. K. Gorbatenko

One of the most common and dangerous cattle diseases of oncogenic origin is leukemia. An effective technological step to control animal leukemia and to prevent the possibility of its further spread is milk pasteurization. We have studied the quality of dairy raw materials and equipment used in the pasteurization of milk. The resistance of pasteurized milk was compared after using various methods of its processing (storage in a refrigerator at a temperature of 4–5°C). The comparative characteristics and specific energy consumption of the most popular pasteurizer models with ‘UOM’ milk pasteurizer-disinfectant were described. We studied the specific energy consumption of the ‘UOM’ units. It was established that pasteurization of milk in cattle leukemia is an integral stage in the overall complex of veterinary and sanitary measures. For pasteurization in livestock farms and milk processing plants, it is necessary to install modern, energy-saving, highly efficient pasteurizers using infrared heating. When using infrared equipment for pasteurization-disinfection of milk (‘UOM’), the disinfection of milk occurs at 79.5°C in a stream (without exposure). This mode of milk processing completely destroys the leukemia virus in it and does not affect its nutritional qualities


Author(s):  
Александр Остановский ◽  
Aleksandr Ostanovskiy

The necessity of improving technological operations in the processing of mineral raw materials and the use of energy-efficient grinding equipment is substantiated. The technical and technological benefits of vertical dynamic autogenous grinding mills are given. They are based on a method of self-grinding of the material, which allows to reduce the specific energy consumption. The technical advantages of the MKAD system mills, the structural schemes of which have an indifferent group are explained. Since the mills of this system additionally use so-called “circulating” energy, depending on the degree of deformation of the drive motor shaft, it is necessary to study the effect of kinematic mismatch of closed-circuit branches on the specific energy consumption of grinding. The graphic dependences of kinematic discrepancy effect on the specific energy consumption of grinding in the MKAD system mills are presented.


Author(s):  
Juan Espindola ◽  
Farah Nazifa Nourin ◽  
Mohammad D. Qandil ◽  
Ahmad I. Abdelhadi ◽  
Ryoichi Samuel Amano

2014 ◽  
Vol 672-674 ◽  
pp. 499-502
Author(s):  
Li Ming Wei ◽  
Peng Xu

Campus energy consumption takes up a large proportion of the total expenses of the campus. At the same time power consumption is emphasis. In the paper design of campus energy monitoring system and key technologies are demonstrated. The above-mentioned scheme is applied in a university in the north of China. The energy-saving measures are studied combined with the characteristics of the specific energy consumption.


Author(s):  
Vivek R. Gandhewar

Among all the metal industries, the iron and steel industries are the most energy intensive sectors in India. Worldwide the use of induction furnaces in steel industries especially in foundries has increased exponentially. A great deal of research is dedicated to identify the factors that affect the performance of the furnace. It is observed that quantity of molten metal produced per batch, average time required for production per batch, electricity consumption per ton ,raw material in ratio, power supply on and off time, thickness of refractory lining are some of the crucial factors that are responsible for improving the productivity of Induction Furnace. This paper presents the results of a study where an attempt is made to optimize the specific energy consumption and alternatively productivity. The correlation between various parameters was found in order to optimize the results. To get the optimum results TOPSIS was applied .Finally, the results of the study confirm the common connotation that less specific energy consumption leads to more productivity. Academicians and practitioners could use the results as a guideline for studying effects of various induction furnace parameters


Sign in / Sign up

Export Citation Format

Share Document