scholarly journals Renewable energy sources: New opportunities for thermoelectric generators

Author(s):  
Igor Yu. Shelekhov ◽  
◽  
Natalia L. Dorofeeva ◽  
Evgeniy I. Smirnov ◽  
Anna A. Dorofeeva ◽  
...  

The work sets out to analyse the application of new technologies in the design of thermoelectric systems, as well as to compare classical thermoelectric systems with those characterized by a spatial orientation of heat-transfer sides. New thermoelectric systems are increasingly competing with con-ventional methods of converting energy up to several hundred watts. In order to expand the application of thermoelectric systems, new design methods and solutions providing for a more efficient conversion of heat losses into useful energy should be developed. This work presents the results of a comparative analysis of a classical thermoelectric module and a thermoelectric module with a spatial orientation of the sides. It is shown that the efficiency of the latter is 36% and 43% higher than that of the former at currents of 4A and 8A, respectively. According to the findings, the efficiency of thermoelectric modules depends primarily on technical solutions in their design and engineering, rather than on the electro-physical characteristics of thermoelectric junctions. In order to increase the efficiency of thermoelectric systems, future work should be aimed at improving the design of thermoelectric modules. The applica-tion of new technologies in manufacturing thermoelectric modules allows the mutual influence of heated and cooled surfaces to be eliminated and the area of heat dissipation to be significantly expanded. The possibility of generating higher power values increases the efficiency of thermoelectric modules and expandsthe scope of their application, substituting conventional heat pumps.

Author(s):  
Anita Rønne

Increasing focus on sustainable societies and ‘smart cities’ due to emphasis on mitigation of climate change is simultaneous with ‘smart regulation’ reaching the forefront of the political agenda. Consequently, the energy sector and its regulation are undergoing significant innovation and change. Energy innovations include transition from fossil fuels to more renewable energy sources and application of new computer technology, interactively matching production with consumer demand. Smart cities are growing and projects are being initiated for development of urban areas and energy systems. Analysis from ‘Smart Cities Accelerator’, developed under the EU Interreg funding programme that includes Climate-KIC,——provides background for the focus on a smart energy system. Analysis ensures the energy supply systems support the integration of renewables with the need for new technologies and investments. ‘Smart’ is trendy, but when becoming ‘smart’ leads to motivation that is an important step towards mitigating climate change.


2021 ◽  
Vol 13 (13) ◽  
pp. 7025
Author(s):  
Shiva Gorjian ◽  
Behnam Hosseingholilou ◽  
Laxmikant D. Jathar ◽  
Haniyeh Samadi ◽  
Samiran Samanta ◽  
...  

The food industry is responsible for supplying the food demand of the ever-increasing global population. The food chain is one of the major contributors to greenhouse gas (GHG) emissions, and global food waste accounts for one-third of produced food. A solution to this problem is preserving crops, vegetables, and fruits with the help of an ancient method of sun drying. For drying agricultural and marine products, several types of dryers are also being developed. However, they require a large amount of energy supplied conventionally from pollutant energy sources. The environmental concerns and depletion risks of fossil fuels persuade researchers and developers to seek alternative solutions. To perform drying applications, sustainable solar power may be effective because it is highly accessible in most regions of the world. Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. This study reviews the integration of GHDs with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, the integration of solar-assisted greenhouse dryers (SGHDs) with heat pumps and thermal energy storage (TES) units, as well as their hybrid configuration considering integration with other renewable energy sources, is investigated to improve their thermal performance. In this regard, this review presents and discusses the most recent advances in this field. Additionally, the economic analysis of SGHDs is presented as a key factor to make these sustainable facilities commercially available.


Heritage ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 57-87 ◽  
Author(s):  
Ahmed Khalil ◽  
Naglaa Hammouda ◽  
Khaled El-Deeb

Sustainable design is believed to stand on the opposite side of heritage conservation. This view is supported by the fact that sustainable design requires invasive measures to implement new technologies and treatments that challenge the principle of minimum intervention in heritage conservation. Another point of view sees heritage conservation as an already act of sustainable development that protects and preserves social and cultural resources such as heritage buildings and their intangible values. On the other hand, research and practice have proven that heritage buildings can be the subjects of sustainable design projects that achieve outstanding measures of sustainability and energy efficiency while not compromising the authenticity of the heritage value of the building. This sustainable conservation reaches its peak in adaptive-reuse projects of heritage buildings as reusing the building guarantees its ongoing maintenance and promotes its social, cultural and economic values to society, while giving it the ability to withstand modern users’ comfort and energy efficiency standards. This research presents a case study of the adaptive-reuse project of Villa Antoniadis in Alexandria; a heritage building built in the mid-nineteenth century and in the process of a major adaptive-reuse project. The history and significance of the building will be studied as well as the conservation values of the current project, then some proposals for interventions that could achieve more energy efficiency for the project while conserving the building are discussed. The research included a simulation of the building, using building energy modelling software for the current adaptive-reuse project as a base case, and the hypothetical application of different proposed sustainable interventions such as thermal insulation, double glazing, shading, lighting control, natural ventilation, and photovoltaic energy generation, where the energy savings potentials for each proposed intervention were studied. The simulation proved a possible reduction of 36.5% in the cooling, heating and lighting energy consumption as well as generated 74.7% of the energy required for cooling, heating and lighting from renewable energy sources.


Circuit World ◽  
2016 ◽  
Vol 42 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Michal Baszynski ◽  
Edward Ramotowski ◽  
Dariusz Ostaszewski ◽  
Tomasz Klej ◽  
Mariusz Wojcik ◽  
...  

Purpose – The purpose of this paper is to evaluate thermal properties of printed circuit board (PCB) made with use of new materials and technologies. Design/methodology/approach – Four PCBs with the same layout but made with use of different materials and technologies have been investigated using thermal camera to compare their thermal properties. Findings – The results show how important the thermal properties of PCBs are for providing effective heat dissipation, and how a simple alteration to the design can help to improve the thermal performance of electronic device. Proper layout, new materials and technologies of PCB manufacturing can significantly reduce the temperature of electronic components resulting in higher reliability of electronic and power electronic devices. Originality/value – This paper shows the advantages of new technologies and materials in PCB thermal management.


2016 ◽  
Vol 53 (5) ◽  
pp. 43-53
Author(s):  
G. Klāvs ◽  
A. Kundziņa ◽  
I. Kudrenickis

Abstract Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.


2018 ◽  
Vol 40 (2) ◽  
pp. 220-236 ◽  
Author(s):  
Irfan Ahmad Gondal

This study presents an innovative concept of a compact integrated solar-thermoelectric module that can form part of the building envelope. The heating/cooling modes use the photovoltaic electrical current to power the heat pump. The experimental analysis was carried out and the results of coefficient of performance were in the range 0.5–1 and 2.6–5 for cooling and heating functions, respectively. The study demonstrates that thermoelectric cooler can effectively be used for heating, ventilation, and air conditioning applications by integrating with solar panels especially in cooling applications. The system is environmentally friendly and can contribute in the implementation of zero energy buildings concept. Practical application: In order to help address the challenge of climate change and associated environmental effects, there is continuous demand for new technologies and applications that can be readily integrated into day-to-day life as a means of reducing anthropogenic impact. Heating, ventilation, and air conditioning, as one of the largest energy consumers in buildings, is the focus of many researchers seeking to reduce building energy use and environmental impact. This article proposes using facades and windows that have an integrated modules of solar photovoltaic cells and thermoelectric devices that are able to work together to achieve heating and cooling effects as required by the building without requiring any external operational power.


2015 ◽  
Vol 28 (3) ◽  
pp. 26-53 ◽  
Author(s):  
Ellis P Judson ◽  
Sandra Bell ◽  
Harriet Bulkeley ◽  
Gareth Powells ◽  
Stephen Lyon

Challenges of energy security, low carbon transitions, and electricity network constraints have led to a shift to new, efficient technologies for household energy services. Studies of such technological innovations usually focus on consumer information and changes in behaviour to realise their full potential. We suggest that regarding such technologies in existing energy provision systems opens up questions concerning how and why such interventions are delivered. We argue that we must understand the ways by which energy systems are co-constituted through the habits and expectations of households, their technologies and appliances, alongside arrangements associated with large-scale socio-technical infrastructures. Drawing on research with air-source-to-water heat pumps (ASWHP), installed as part of a large trans-disciplinary, utility-led research and demonstration project in the north of England, we investigate how energy services provision and everyday practice shapes new technologies uptake, and how such technologies mediate and reconfigure relations between users, providers and infrastructure networks. While the installation of ASWHP has led to role differentiation through which energy services are provided, the space for new forms of co-provision to emerge is limited by existing commitments to delivering energy services. Simultaneously, new forms of interdependency emerge between users, providers and intermediaries through sites of installation, instruction, repair and feedback. We find that although new technologies do lead to the rearrangement of practices, this is often disrupted by obduracy in the conventions and habits around domestic heating and hot water practices that have been established in relation to existing systems of provision. Rather being simply a matter of increasing levels of knowledge in order to ensure that such technologies are adopted effi ciently and effectively, our paper demonstrates how systemic arrangements of energy provision and everyday practice are co-implicated in socio-technical innovation by changing the nature of energy supply and use.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5119
Author(s):  
Tomasz Sliwa ◽  
Tomasz Kowalski ◽  
Dominik Cekus ◽  
Aneta Sapińska-Śliwa

Currently, renewable energy is increasingly important in the energy sector. One of the so-called renewable energy sources is geothermal energy. The most popular solution implemented by both small and large customers is the consumption of low-temperature geothermal energy using borehole heat exchanger (BHE) systems assisted by geothermal heat pumps. Such an installation can operate regardless of geological conditions, which makes it extremely universal. Borehole heat exchangers are the most important elements of this system, as their design determines the efficiency of the entire heating or heating-and-cooling system. Filling/sealing slurry is amongst the crucial structural elements. In borehole exchangers, reaching the highest possible thermal conductivity of the cement slurry endeavors to improve heat transfer between the rock mass and the heat carrier. The article presents a proposed design for such a sealing slurry. Powdered magnesium was used as an additive to the cement. The approximate cost of powdered magnesium is PLN 70–90 per kg (EUR 15–20/kg). Six different slurry formulations were tested. Magnesium flakes were used in designs A, B, C, and magnesium shavings in D, E and F. The samples differed in the powdered magnesium content BWOC (by weight of cement). The parameters of fresh and hardened sealing slurries were tested, focusing mainly on the thermal conductivity parameter. The highest thermal conductivity values were obtained in design C with the 45% addition of magnesium flakes BWOC.


2020 ◽  
pp. 1-7
Author(s):  
Sumit Kumar Gupta ◽  

Nanotechnology is new frontiers of this century. The world is facing great challenges in meeting rising demands for basic commodities(e.g., food, water and energy), finished goods (e.g., cellphones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. In recent years there has been a rapid increase in nanotechnology in the fields of medicine and more specifically in targeted drug delivery. Opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and hemistry. Smart delivery of nutrients, bio-separation of proteins, rapid sampling of biological and chemical contaminants, and nano encapsulation of nutraceuticals are some of the emerging topics of nanotechnology for food and agriculture. Nanotechnology is helping to considerably improve, even revolutionize, many technology and Industry sectors: information technology, energy, environmental science, medicine, homeland security, food safety, and transportation, among many others. Today’s nanotechnology harnesses current progress in chemistry, physics, materials science, and biotechnology to create novel materials that have unique properties because their structures are determined on the nanometer scale. This paper summarizes the various applications of nanotechnology in recent decades Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel Nano and biomaterials, and Nano devices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below100 nm. The application and use of Nano materials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of Nano products is rapidly growing since more and more Nano engineered materials are reaching the global market the continuous revolution in nanotechnology will result in the fabrication of nanomaterial with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 .Emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaic offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes


2021 ◽  
Vol 11 (17) ◽  
pp. 8068
Author(s):  
Anna Dąbrowska ◽  
Monika Kobus ◽  
Bartosz Pękosławski ◽  
Łukasz Starzak

In recent times, more and more workers are exposed to thermal stress due to climate changes and increased ambient temperature. Demanding physical activities and the use of protective clothing are additional sources of thermal load for workers. Therefore, recent research has focused on the development of protective clothing with a cooling function. Phase change materials, air or liquid, were mainly used for this purpose; only a few publications were concerned the use of thermoelectric modules. This publication analyzes the influence of such factors as supplied current, ambient temperature, and the type of heat sink on the amount of heat flux transferred by a thermoelectric cooler (TEC) and the electric power consumed by it. In the course of laboratory tests, a flexible thermoelectric module and three heat sink variants were tested. For this purpose, a polymer TEGway heat sink, a metal one, and a self-made one based on a superabsorbent were used. The research showed that at a temperature of 30 °C and above, the amount of the heat flux transferred by a TEC with a total area of 58 cm2, and an active area of 10 cm2 should be expected to be from 1 W to 1.5 W. An increase in ambient temperature from 20 to 35 °C caused a significant reduction in the heat flux by about 1 W. The results obtained indicated that the type of heat sink affects the heat flux drawn by the TEC to a statistically significant extent. The heat sink using the evaporation effect turned out to be the most efficient.


Sign in / Sign up

Export Citation Format

Share Document