scholarly journals Development of regression model of proteins attackability process in meat food (in vitro)

2021 ◽  
Vol 6 (3) ◽  
pp. 236-241
Author(s):  
A. S. Pulatov ◽  
M. A. Nikitina

In the presented article the authors consider the issues of development of regression model for process of food digestion by proteolytic enzymes in human body. The authors use correlation analysis. They analyze the main nutritional values and physical and chemical properties of meat products, the modes of heat treatment of semi-finished lamb products. The essential parameters and features are determined to find the dependence between the factor values and efficient values of the basic raw material, which affect the quality of the technological processes and, in general, the finished product. The regression model equation is mathematically calculated by methods of solving K. Gauss linear equations. The standard deviations of parameters are calculated, the initial data are normalized; the matrices of the pair correlation coefficients, lower and upper limits of their values are compiled. Equations of the mathematical regression model of meat proteins attackability by proteolytic enzymes — in vitro (pepsin, trypsin) are developed. It is proved that the obtained equation represents a regression model of the process of meat food proteins attackability by enzymes (pepsin, trypsin and chymotrypsin), depending on the determined 3 essential factors (weight of a meat piece, duration of frying, collagen content in lamb meat). Also this equation reflects the process of lamb digestibility in a digestive tract of a human body.

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 4140
Author(s):  
Ángel Abellán ◽  
Raúl Domínguez-Perles ◽  
Cristina García-Viguera ◽  
Diego A. Moreno

Cruciferous sprouts are rising in popularity as a hallmark of healthy diets, partially because of their phytochemical composition, characterized by the presence of flavonols and cinnamates. However, to shed light on their biological activity, the ability to assimilate (poly)phenols from sprouts (bioaccessible fraction) during gastrointestinal digestion needs to be studied. In this frame, the present work studies the effect of the physicochemical and enzymatic characteristics of gastrointestinal digestion on flavonols and cinnamoyl derivatives, by a simulated static in vitro model, on different cruciferous (red radish, red cabbage, broccoli, and white mustard) sprouts. The results indicate that, although the initial concentrations of phenolic acids in red radish (64.25 mg/g fresh weight (fw)) are lower than in the other sprouts studied, their bioaccessibility after digestion is higher (90.40 mg/g fw), followed by red cabbage (72.52 mg/g fw), white mustard (58.72 mg/g fw), and broccoli (35.59 mg/g fw). These results indicate that the bioaccessibility of (poly)phenols is not exclusively associated with the initial concentration in the raw material, but that the physico-chemical properties of the food matrix, the presence of other additional molecules, and the specific characteristics of digestion are relevant factors in their assimilation.


2019 ◽  
Vol 15 (3-4) ◽  
Author(s):  
Zhou Xu ◽  
Bulei Wang ◽  
Liang Fu ◽  
Handong Wang ◽  
Jing Liu ◽  
...  

AbstractPenthorum chinense Pursh is a well-known traditional Chinese medicine, however, little attention has been paid to the polysaccharides of P. chinense (PCP). Therefore, it is great significance to investigate the characteristics and activities of PCP. In this study, response surface methodology was applied to optimize the extraction parameters of PCP. Then, two polysaccharides fractions (PCP-1 and PCP-2) were purified from PCP by using DEAE-52 chromatography, and there preliminary chemical properties and in vitro antioxidant activities were investigated. Results revealed that the optimum extraction conditions of PCP were identified as follow: ratio of water to raw material 20.6 mL/g; extraction time 3.5 h and extraction temperature 85°C. Based on these conditions, the maximum yield of PCP was 3.12% ± 0.19%. Purified fractions PCP-1 and PCP-2 were all acidic heteropolysaccharides, and PCP-1 mainly consisted of galactose and arabinose while PCP-2 mainly consisted of rhamnose, galacturonic acid, galactose and arabinose. Moreover, PCP-2 exhibited stronger scavenging activities against DPPH radical, hydroxyl radical and superoxide anion radical and chelating activity on Fe2+in vitro.


1990 ◽  
Vol 63 (01) ◽  
pp. 016-023 ◽  
Author(s):  
A M H P van den Bessekaar ◽  
J Meeuwisse-Braun ◽  
R M Bertina

SummaryFive different APTT reagents, two amidolytic anti-ITa assays, one amidoiytic anti-Xa assay, and one coagulometric anti-Xa/ anti-IIa assay were used to assess the effect of heparin in patients treated for venous thromboembolic disease. Good correlations were observed between lug-transformed APYE> determined with the various reagents (correlation coefficients: 0.92-0.96).Nevertheless there were important differences in the slopes of the lines of relationship between the APTT reagents.Good correlations were observed between the anti-Xa and anti-IIa assay results (correlation coefficients: 0.92-0.97). However, the amidolytic anti-Xa activity was significantly higher (p <0.001) than the two amidolytic anti-IIa activities. Less good correlations were observed between the log-transformed APTTs and the anti-Xa or anti-IIa activities (correlation coefficients: 0.64-0.78). The correlations were improved by transforming the APTT into APTT-ratio, i.e. the ratio of the patient’s APTT to the same patient’s APTT after removal of heparin from the plasma sample by means of ECTEOLA-cellulose treatment. The correlation coefficients of log (AFTT-ratio) with anti-Xa or anti-IIa ranged from 0.76 to 0.87.For both APTT and amidolytic heparin assay, the response to in vitro heparin was different from the response to ex vivo heparin.Therefore, equivalent therapeutic ranges should be assessed by using ex vivo samples rather than in vitro heparin. Because of the response differences between the APTT reagents, it is not adequate to define a therapeutic range for heparin therapy without specification of the reagent.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


Food Biology ◽  
1970 ◽  
pp. 19-23
Author(s):  
Nawal Abdel-Gayoum Abdel-Rahman

The aim of this study is to use of karkede (Hibiscus sabdariffa L.) byproduct as raw material to make ketchup instead of tomato. Ketchup is making of various pulps, but the best type made from tomatoes. Roselle having adequate amounts of macro and micro elements, and it is rich in source of anthocyanine. The ketchup made from pulped of waste of soaked karkede, and homogenized with starch, salt, sugar, ginger (Zingiber officinale), kusbara (Coriandrum sativum) and gum Arabic. Then processed and filled in glass bottles and stored at two different temperatures, ambient and refrigeration. The total solids, total soluble solids, pH, ash, total titratable acidity and vitamin C of ketchup were determined. As well as, total sugars, reducing sugars, colour density, and sodium chloride percentage were evaluated. The sensory quality of developed product was determined immediately and after processing, which included colour, taste, odour, consistency and overall acceptability. The suitability during storage included microbial growth, physico-chemical properties and sensory quality. The karkede ketchup was found free of contaminants throughout storage period at both storage temperatures. Physico-chemical properties were found to be significantly differences at p?0.05 level during storage. There were no differences between karkade ketchup and market tomato ketchup concerning odour, taste, odour, consistency and overall acceptability. These results are encouraging for use of roselle cycle as a raw material to make acceptable karkade ketchup.


Author(s):  
Ashwin Kumar Tulasi ◽  
Anil Goud Kandhula ◽  
Ravi Krishna Velupula

Topiramate is a second-generation antiepileptic drug used in partial, generalized seizures as an oral tablet. Oral route of administration is most convenient but shows delayed absorption. Moreover, in emergency cases, parenteral administration is not possible as it requires medical assistance. Hence, the present study was aimed to develop topiramate mucoadhesive nanoparticles for intranasal administration using ionotropic gelation method. The developed nanoparticles were evaluated for physico-chemical properties like particle size, zeta potential, surface morphology, drug content, entrapment efficiency, in vitro drug release, mucoadhesive strength, and ex vivo permeation studies in excised porcine nasal mucosa. Optimized nanoparticle formulation (T9) was composed oil mucoadhesive agent (Chitosan 1% w/w), cross linking polymer (TPP) and topiramate 275mg, 100mg and 4% respectively. It showed particle size of 350nm, high encapsulation efficacy and strong mucoadhesive strength. In vitro drug diffusion of optimized formulation showed 95.12% release of drug after 180min. Ex-vivo permeation of drug across nasal mucosa was   88.05 % after 180min. Nasocilial toxicity studies showed optimized formulation did not damage the nasal mucosa. Thus, the intranasal administration of topiramate using chitosan can be a promising alternative for brain targeting and the treatment of epilepsy.


The quality, safety, and suitability of animal fat for processing of a specific meat product is a critical issue. Increasing the human awareness about the health aspects associated with increased intake of animal fat, makes camel fat a suitable raw material for meat processing due to its excellent nutritional contribution. Therefore, the target of this study is examination of the sensory, physicochemical, fat oxidation, fatty acid profile, and other quality parameters of camel fat to evaluate the feasibility for processing of different meat products. To achieve this goal, 30 fat samples each from the hump, renal, and mesentery of Arabian male camels were investigated. The results showed that both the renal and mesenteric fat had honey color and medium-soft texture, while the hump had greyish-white color and hard texture. The sensory panel scores were significantly different between the hump and other fats. Hump fat had significantly (P<0.05) higher moisture, protein, and collagen content, while higher fat content was recorded in mesenteric fat. The fatty acid analysis showed that hump had high SFA and very low PUFA in comparison with both renal and mesenteric fat. Camel fat had high oxidation stability, and the mean values were very low in comparison with the levels of quality and acceptability. The ultrastructural analysis showed that hump fat had high elastin fibers which increase its hardness. The results indicated that both renal and mesenteric fat were more suitable for the production of various meat products than the hump.


Author(s):  
Siraj Salman Mohammad ◽  
Renata Oliveira Santos ◽  
Maria Ivone Barbosa ◽  
José Lucena Barbosa Junior

: Anthocyanins are widely spread in different kinds of food, especially fruits and floral tissues, there is an extensive range of anthocyanin compounds reach more than 600 exist in nature. Anthocyanins can be used as antioxidants and raw material for several applications in food and pharmaceutical industry. Consequently, a plenty of studies about anthocyanins sources and extraction methods were reported. Furthermore, many studies about their stability, bioactive and therapeutic properties have been done. According to the body of work, we firstly worked to shed light on anthocyanin properties including chemical, antioxidant and extraction properties. Secondly, we reported the applications and health benefits of anthocyanin including the applications in food processes and anthocyanin characteristics as therapeutic and prophylactic compounds. We reviewed anticancer, anti-diabetic, anti-fatness, oxidative Stress and lipid decreasing and vasoprotective effects of anthocyanins. In conclusion, because the importance of phytochemicals and bioactive compounds the research is still continuing to find new anthocyanins from natural sources and invest them as raw materials in the pharmaceutical and nutrition applications.


2021 ◽  
Vol 22 (15) ◽  
pp. 7906
Author(s):  
Alexey A. Komissarov ◽  
Maria A. Karaseva ◽  
Marina P. Roschina ◽  
Andrey V. Shubin ◽  
Nataliya A. Lunina ◽  
...  

Regulated cell death (RCD) is a fundamental process common to nearly all living beings and essential for the development and tissue homeostasis in animals and humans. A wide range of molecules can induce RCD, including a number of viral proteolytic enzymes. To date, numerous data indicate that picornaviral 3C proteases can induce RCD. In most reported cases, these proteases induce classical caspase-dependent apoptosis. In contrast, the human hepatitis A virus 3C protease (3Cpro) has recently been shown to cause caspase-independent cell death accompanied by previously undescribed features. Here, we expressed 3Cpro in HEK293, HeLa, and A549 human cell lines to characterize 3Cpro-induced cell death morphologically and biochemically using flow cytometry and fluorescence microscopy. We found that dead cells demonstrated necrosis-like morphological changes including permeabilization of the plasma membrane, loss of mitochondrial potential, as well as mitochondria and nuclei swelling. Additionally, we showed that 3Cpro-induced cell death was efficiently blocked by ferroptosis inhibitors and was accompanied by intense lipid peroxidation. Taken together, these results indicate that 3Cpro induces ferroptosis upon its individual expression in human cells. This is the first demonstration that a proteolytic enzyme can induce ferroptosis, the recently discovered and actively studied type of RCD.


Sign in / Sign up

Export Citation Format

Share Document