Grain Yield and Water Consumption of Ethephon‐Treated Corn under Different Irrigation Regimes

1997 ◽  
Vol 89 (1) ◽  
pp. 104-112 ◽  
Author(s):  
Riccardo d'Andria ◽  
Fabrizio Quaglietta Chiarandà ◽  
Antonella Lavini ◽  
Mauro Mori
Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 756
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Ahmed S. M. El-Kholy ◽  
Mohamed M. A. Ali ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water shortage is a major environmental stress that destructively impacts maize production, particularly in arid regions. Therefore, improving irrigation management and increasing productivity per unit of water applied are needed, especially under the rising temperature and precipitation fluctuations induced by climate change. Laboratory and field trials were carried out in the present study, which were aimed at assessing the possibility of promoting maize germination, growth, grain yield and crop water productivity (CWP) using seed priming under different irrigation regimes. Two seed priming treatments, i.e., hydro-priming and hardening versus unprimed seeds, were applied under four irrigation regimes, i.e., 120, 100, 80 and 60% of estimated crop evapotranspiration (ETc). The obtained results indicated that increasing irrigation water from 100% up to 120% ETc did not significantly increase grain yield or contributing traits, while it decreased CWP. Deficit irrigation of 80 and 60% ETc gradually decreased grain yield and all attributed traits. Seed priming significantly ameliorated seedlings’ vigor as indicated by earlier germination, higher germination percentage, longer roots and shoots, and heavier fresh and dry weight than unprimed seeds with the superiority of hardening treatment. Additionally, under field conditions, seed priming significantly increased grain yield, yield contributing traits and CWP compared with unprimed treatment. Interestingly, the results reflect the role of seed priming, particularly hardening, in mitigating negative impacts of drought stress and enhancing maize growth, grain yield and attributed traits as well as CWP under deficit irrigation conditions. This was demonstrated by a significant increase in grain yield and CWP under moderate drought and severe drought conditions compared with unprimed treatment. These results highlight that efficient irrigation management and seed priming can increase maize yield and water productivity in arid environments.


2018 ◽  
Vol 209 ◽  
pp. 1-10 ◽  
Author(s):  
Teimour Razavipour ◽  
Sina Siavash Moghaddam ◽  
Sahar Doaei ◽  
Seyyed Ali Noorhosseini ◽  
Christos A. Damalas

2019 ◽  
Vol 9 (1) ◽  
pp. 173-188
Author(s):  
A. Mahsavi Khorami ◽  
J. MasoudSinaki ◽  
M. Amini Dehaghi ◽  
Sh. Rezvan ◽  
A. Damavandi ◽  
...  

2016 ◽  
Vol 8 (1) ◽  
pp. 429-436 ◽  
Author(s):  
M. Kumar ◽  
A. Sarangi ◽  
D. K. Singh ◽  
A.R. Rao ◽  
S. Sudhishri

A field experiment with split-split plot design (SSPD) was conducted to study the response of two winter wheat (Triticumaestivum L.) cultivars (viz. salt tolerant cultivar KRL-1-4 and salt non-tolerant cultivar HD-2894) under saline irrigation regimes with and without foliar potassium fertilization on growth and grain yield of wheat during rabi 2011-12 and 2012-13. Potassium in the ratio of K+: Na+ (1: 10) was applied as foliar application during the heading stage of the crop. Results showed that the grain yield of KRL-1-4 and HD-2894 cultivars with foliar potassium fertilization at the heading stage increased by 6.5 to 22% and 3 to 15% during rabi 2011-2012, respectively under different saline irrigation regimes as compared to the control. Moreover, the results of rabi 2012-13 showed an increase in grain yield ranging from 4.5 to 20% for KRL-1-4 as compared to the control. Statistical analysis of grain yield parameter showed that the foliar potassium application in both varieties resulted in significant yield difference at 0.05 probability level as compared to the non-foliar application. Overall, it was observed that the foliar potassium fertilization increased the grain yield of both wheat cultivars, while the salt tolerant cultivar performed better than the salt non-tolerant cultivar under irrigated saline regimes.


2018 ◽  
Vol 64 (No. 4) ◽  
pp. 156-163
Author(s):  
Wang Dapeng ◽  
Zheng Liang ◽  
Gu Songdong ◽  
Shi Yuefeng ◽  
Liang Long ◽  
...  

Excessive nitrogen (N) and water input, which are threatening the sustainability of conventional agriculture in the North China Plain (NCP), can lead to serious leaching of nitrate-N (NO<sub>3</sub><sup>–</sup>-N). This study evaluates grain yield, N and water consumption, NO<sub>3</sub><sup>–</sup>-N accumulation and leaching in conventional and two optimized winter wheat-summer maize double-cropping systems and an organic alfalfa-winter wheat cropping system. The results showed that compared to the conventional cropping system, the optimized systems could reduce N, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching by 33, 35 and 67–74%, respectively, while producing nearly identical grain yields. In optimized systems, soil NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was about 80 kg N/ha most of the time. In the organic system, N input, water consumption and NO<sub>3</sub><sup>–</sup>-N leaching was reduced even more (by 71, 43 and 92%, respectively, compared to the conventional system). However, grain yield also declined by 46%. In the organic system, NO<sub>3</sub><sup>–</sup>-N accumulation within the root zone was generally less than 30 kg N/ha. The optimized systems showed a considerable potential to reduce N and water consumption and NO<sub>3</sub><sup>–</sup>-N leaching while maintaining high grain yields, and thus should be considered for sustainable agricultural development in the NCP.  


Sign in / Sign up

Export Citation Format

Share Document