Labile Organic Matter in Soil Solution: I. Metabolites of Chemical Signaling Pathways from Plant-Microbe Interactions

Author(s):  
Carlos M. Monreal
2021 ◽  
Vol 22 (9) ◽  
pp. 4812
Author(s):  
Cunchun Yang ◽  
W. G. Dilantha Fernando

An oxidative burst is an early response of plants to various biotic/abiotic stresses. In plant-microbe interactions, the plant body can induce oxidative burst to activate various defense mechanisms to combat phytopathogens. A localized oxidative burst is also one of the typical behaviors during hypersensitive response (HR) caused by gene-for-gene interaction. In this study, the occurrence of oxidative burst and its signaling pathways was studied from different levels of disease severity (i.e., susceptible, intermediate, and resistant) in the B. napus–L. maculans pathosystem. Canola cotyledons with distinct levels of resistance exhibited differential regulation of the genes involved in reactive oxygen species (ROS) accumulation and responses. Histochemical assays were carried out to understand the patterns of H2O2 accumulation and cell death. Intermediate and resistant genotypes exhibited earlier accumulation of H2O2 and emergence of cell death around the inoculation origins. The observations also suggested that the cotyledons with stronger resistance were able to form a protective region of intensive oxidative bursts between the areas with and without hyphal intrusions to block further fungal advancement to the uninfected regions. The qPCR analysis suggested that different onset patterns of some marker genes in ROS accumulation/programmed cell death (PCD) such as RBOHD, MPK3 were associated with distinct levels of resistance from B. napus cultivars against L. maculans. The observations and datasets from this article indicated the distinct differences in ROS-related cellular behaviors and signaling between compatible and incompatible interactions.


2010 ◽  
Vol 7 (11) ◽  
pp. 3473-3489 ◽  
Author(s):  
J. Holtvoeth ◽  
H. Vogel ◽  
B. Wagner ◽  
G. A. Wolff

Abstract. Organic matter preserved in Lake Ohrid sediments originates from aquatic and terrestrial sources. Its variable composition reflects climate-controlled changes in the lake basin's hydrology and related organic matter export, i.e. changes in primary productivity, terrestrial plant matter input and soil erosion. Here, we present first results from lipid biomarker investigations of Lake Ohrid sediments from two near-shore settings: site Lz1120 near the southern shore, with low-lying lands nearby and probably influenced by river discharge, and site Co1202 which is close to the steep eastern slopes. Variable proportions of terrestrial n-alkanoic acids and n-alkanols as well as compositional changes of ω-hydroxy acids document differences in soil organic matter supply between the sites and during different climate stages (glacial, Holocene, 8.2 ka cooling event). Changes in the vegetation cover are suggested by changes in the dominant chain length of terrestrial n-alkanols. Effective microbial degradation of labile organic matter and in situ contribution of organic matter derived from the microbes themselves are both evident in the sediments. We found evidence for anoxic conditions within the photic zone by detecting epicholestanol and tetrahymanol from sulphur-oxidising phototrophic bacteria and bacterivorous ciliates and for the influence of a settled human community from the occurrence of coprostanol, a biomarker for human and animal faeces (pigs, sheep, goats), in an early Holocene sample. This study illustrates the potential of lipid biomarkers for future environmental reconstructions using one of Europe's oldest continental climate archives, Lake Ohrid.


2014 ◽  
Vol 11 (11) ◽  
pp. 2977-2990 ◽  
Author(s):  
E. Bayraktarov ◽  
C. Wild

Abstract. Sediments are fundamental for the function of oligotrophic coral reef ecosystems because they are major places for organic matter recycling. The Tayrona National Natural Park (TNNP, Colombian Caribbean) is located between the population center Santa Marta (>455 000 inhabitants) in the southwest and several river mouths in the east. Here, coral reef sediments experience pronounced changes in environmental conditions due to seasonal coastal upwelling, but knowledge of relevant spatiotemporal effects on organic matter supply to the sediments and recycling processes is not available. Therefore, sediment traps were deployed monthly over 14 months complemented by assessment of sedimentary properties (e.g., porosity, grain size, content of particulate organic matter and pigments) and sedimentary O2 demand (SOD) at water-current-exposed and sheltered sites along distance gradients (12–20 km) to Santa Marta and the eastern river mouths (17–27 km). Findings revealed that seasonal upwelling delivered strong (75–79% of annual supply) pulses of labile organic matter mainly composed of fresh phytoplankton detritus (C : N ratio 6–8) to the seafloor. Sedimentary chlorophyll a contents and SOD increased significantly with decreasing distance to the eastern rivers, but only during upwelling. This suggests sedimentary organic matter supply controlled by nutrient-enriched upwelling waters and riverine runoff rather than by the countercurrent-located city of Santa Marta. Organic matter pulses led to significantly higher SOD (more than 30%) at the water-current-sheltered sites as compared to the exposed sites, ensuing a rapid recycling of the supplied labile organic matter in the permeable silicate reef sands.


2013 ◽  
Vol 10 (3) ◽  
pp. 1365-1377 ◽  
Author(s):  
M. O. Rappe-George ◽  
A. I. Gärdenäs ◽  
D. B. Kleja

Abstract. Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.


2004 ◽  
Author(s):  
Teresa W.-M. Fan ◽  
Richard M. Higashi ◽  
David Crowley ◽  
Andrew N. Lane: Teresa A. Cassel ◽  
Peter G. Green

2016 ◽  
Vol 62 (No. 8) ◽  
pp. 355-360 ◽  
Author(s):  
L. Hlisnikovský ◽  
G. Mühlbachová ◽  
E. Kunzová ◽  
M. Hejcman ◽  
M. Pechová

The 28-day incubation experiment was carried out to evaluate the impact of the application of digestate (Dig); digestate with straw (DigSt); pig slurry (Slu) and mineral fertilizer (NPK) on Cd, Cu, Mn and Zn availability, on K<sub>2</sub>SO<sub>4</sub>-extractable carbon content and on the soil pH value in long-term contaminated soil. At days three and seven of the experiment, the 0.01 mol/L CaCl<sub>2</sub>-extractable fractions of Cd, Zn and Mn significantly decreased under organic treatments (Dig, DigSt and Slu) with the most pronounced effect under Dig treatment. The NPK treatment caused the increase of risky element concentrations since day 21 of incubation which was accompanied with pH decrease. The contents of 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon were the highest at day 3 and 7 of incubation in organic treatments. The significant correlations between 0.5 mol/L K<sub>2</sub>SO<sub>4</sub>-extractable carbon and CaCl<sub>2</sub>-extractable metal concentrations showed a close relationship between fresh organic matter added in organic fertilizers and risky element availability, suggesting that newly added labile organic matter can form temporary ligands with risky elements and release them later following its decomposition.  


Weed Science ◽  
1982 ◽  
Vol 30 (6) ◽  
pp. 688-691 ◽  
Author(s):  
Michael G. Patterson ◽  
Gale A. Buchanan ◽  
Robert H. Walker ◽  
Richard M. Patterson

Analysis of fluometuron [1,1-dimethyl-3-(α,α,α-trifluoro-m-tolyl)urea] in soil solution after application of 0.5 or 1.0 ppmw revealed up to five-fold differences among three Alabama soils (Lucedale fine sandy loam, Decatur silty clay loam, and Sacul loam). Differences in fluometuron in soil solution were attributed to variable organic matter present and clay fractions. Fluometuron concentration in soil solution for each soil correlated well with control of four broadleaf weed species in a field experiment.


Sign in / Sign up

Export Citation Format

Share Document