Suspicious Blood and Performance in Professional Cycling

2012 ◽  
Author(s):  
Tom Coupé ◽  
Olivier Gergaud
2021 ◽  
Vol 16 (1) ◽  
pp. 3-12
Author(s):  
Dajo Sanders ◽  
Teun van Erp

Background: A variety of intensity, load, and performance measures (eg, “power profile”) have been used to characterize the demands of professional cycling races with differing stage types. An increased understanding of the characteristics of these races could provide valuable insight for practitioners toward the design of training strategies to optimally prepare for these demands. However, current reviews within this area are outdated and do not include a recent influx of new articles describing the demands of professional cycling races. Purpose: To provide an updated overview of the intensity and load demands and power profile of professional cycling races. Typically adopted measures are introduced and their results summarized. Conclusion: There is a clear trend in the research that stage type significantly influences the intensity, load, and power profile of races with more elevation gain typically resulting in a higher intensity and load and longer-duration power outputs (ie, >10 min). Flat and semimountainous stages are characterized by higher maximal mean power outputs over shorter durations (ie, <2 min). Furthermore, single-day races tend to have a higher (daily) intensity and load compared with stages within multiday races. Nevertheless, while the presented mean (grouped) data provide some indications on the demands of these races and differences between varying competition elements, a limited amount of research is available describing the “race-winning efforts” in these races, and this is proposed as an important area for future research. Finally, practitioners should consider the limitations of each metric individually, and a multivariable approach to analyzing races is advocated.


2012 ◽  
Vol 14 (5) ◽  
pp. 546-559 ◽  
Author(s):  
Tom Coupé ◽  
Olivier Gergaud

Author(s):  
Gabriel Barreto ◽  
Luana Farias de Oliveira ◽  
Tiemi Saito ◽  
Rafael Klosterhoff ◽  
Pedro Perim ◽  
...  

Purpose: Women’s professional cycling has grown in popularity, and this increase is also apparent in Brazil, which has increased its female cycling calendar in recent years. The aim of this observational study was to (1) determine training and competition loads of a top-level Brazilian female cycling team, (2) evaluate nutrition and clinical health, and (3) measure whether exercise capacity changed throughout the season. Methods: Training and competition data were collected over the season using global positioning system monitors, while laboratory-based physiological and performance measures (incremental cycling test, 30-s Wingate, 4-km time trial) and clinical and nutritional analyses were performed at time points throughout the season. Results: Total distance covered over the year was 11,124 (2895) km (7382–14,698 km). Endurance capacity was reduced over the season (P = .005) but not anaerobic power (all P > .05). Nutrition and stress markers remained largely unchanged throughout the season, although there were some individual fluctuations in some measures, and testosterone concentration was low for some. Median estimated energy availability ranged between 32.3 and 56.8 kcal·kgLBM−1·d−1 during training and 26.4 and 53.8 kcal·kgLBM−1·d−1 during competition. Percentage of training spent in optimal estimated energy availability was generally low, with 3 athletes spending <35% within the optimal intake. Conclusions: Substantial training and competition loads of the monitored professional Brazilian female cyclists may have reduced exercise capacity toward the end of the season, indicative of a grueling yearlong schedule. Several athletes may have had suboptimal energy availability during the season, potentially affecting testosterone concentration. These data demonstrate the difficulties in maintaining optimal nutrition, health, and performance throughout a season in professional female cycling and highlight the need for quality sport-science support for this type of top-level athlete.


Author(s):  
H. M. Thieringer

It has repeatedly been show that with conventional electron microscopes very fine electron probes can be produced, therefore allowing various micro-techniques such as micro recording, X-ray microanalysis and convergent beam diffraction. In this paper the function and performance of an SIEMENS ELMISKOP 101 used as a scanning transmission microscope (STEM) is described. This mode of operation has some advantages over the conventional transmission microscopy (CTEM) especially for the observation of thick specimen, in spite of somewhat longer image recording times.Fig.1 shows schematically the ray path and the additional electronics of an ELMISKOP 101 working as a STEM. With a point-cathode, and using condensor I and the objective lens as a demagnifying system, an electron probe with a half-width ob about 25 Å and a typical current of 5.10-11 amp at 100 kV can be obtained in the back focal plane of the objective lens.


Author(s):  
Huang Min ◽  
P.S. Flora ◽  
C.J. Harland ◽  
J.A. Venables

A cylindrical mirror analyser (CMA) has been built with a parallel recording detection system. It is being used for angular resolved electron spectroscopy (ARES) within a SEM. The CMA has been optimised for imaging applications; the inner cylinder contains a magnetically focused and scanned, 30kV, SEM electron-optical column. The CMA has a large inner radius (50.8mm) and a large collection solid angle (Ω > 1sterad). An energy resolution (ΔE/E) of 1-2% has been achieved. The design and performance of the combination SEM/CMA instrument has been described previously and the CMA and detector system has been used for low voltage electron spectroscopy. Here we discuss the use of the CMA for ARES and present some preliminary results.The CMA has been designed for an axis-to-ring focus and uses an annular type detector. This detector consists of a channel-plate/YAG/mirror assembly which is optically coupled to either a photomultiplier for spectroscopy or a TV camera for parallel detection.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


1986 ◽  
Vol 50 (5) ◽  
pp. 264-267 ◽  
Author(s):  
GH Westerman ◽  
TG Grandy ◽  
JV Lupo ◽  
RE Mitchell

Sign in / Sign up

Export Citation Format

Share Document