Updated E-NRTL Model for High-Concentration MEA Aqueous Solution by Regressing Thermodynamic Experimental Data at High Temperatures

2019 ◽  
Author(s):  
Takao Nakagaki ◽  
Akira Ozeki ◽  
Jun Arakawa
Author(s):  
A. Barreau ◽  
E. Blanchon le Bouhelec ◽  
K.N. Habchi Tounsi ◽  
P. Mougin ◽  
F. Lecomte

2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


2012 ◽  
Vol 9 (1) ◽  
pp. 22-25
Author(s):  
S.V. Amel’kin ◽  
D.Ye. Igoshin

A self-assembly model for porous hydrate structures is proposed, which takes into account the sequence of basic physical processes: hydrate growth on the surface of the aqueous solution, formation of islet structure, capillary flow, separation and transfer of secondary crystallization nuclei to the meniscus. The model was studied within the cellular automata method. A good correspondence between the results of the simulation and the experimental data is obtained.


2021 ◽  
Author(s):  
Long Cao ◽  
Han-Ling Guo ◽  
Rui Lian Lin ◽  
Li-Fei Tian ◽  
Zhi-Hua Zhang ◽  
...  

Using multiple techniques, this work studied the binding behaviors of decamethylcucurbit[5]uril (Me10Q[5]) with o-, m- and p-phenylenediamine (PDA) isomers both in solid state and in aqueous solution. Experimental data indicate...


Author(s):  
Ke Guo ◽  
Shaoyan Wang ◽  
Renfeng Song ◽  
Zhiqiang Zhang

AbstractLeaching titaniferous magnetite concentrate with alkali solution of high concentration under high temperature and high pressure was utilized to improve the grade of iron in iron concentrate and the grade of TiO2 in titanium tailings. The titaniferous magnetite concentrate in use contained 12.67% TiO2 and 54.01% Fe. The thermodynamics of the possible reactions and the kinetics of leaching process were analyzed. It was found that decomposing FeTiO3 with NaOH aqueous solution could be carried out spontaneously and the reaction rate was mainly controlled by internal diffusion. The effects of water usage, alkali concentration, reaction time, and temperature on the leaching procedure were inspected, and the products were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy, respectively. After NaOH leaching and magnetic separation, the concentrate, with Fe purity of 65.98% and Fe recovery of 82.46%, and the tailings, with TiO2 purity of 32.09% and TiO2 recovery of 80.79%, were obtained, respectively.


2006 ◽  
Vol 53 (11) ◽  
pp. 251-260 ◽  
Author(s):  
H. Tsuno ◽  
M. Kawamura ◽  
T. Oya

An expanded-bed anaerobic reactor with granular activated carbon (GAC) medium has been developed to treat wastewaters that contain a high concentration of inhibitory and/or refractory organic compounds as well as readily degradable organic compounds. The process is characterised by a combination of two removal mechanisms; adsorption on GAC and biological degradation by microorganisms grown on GAC. Applicability of the reactor to treatment of phenol, chloroacetaldehyde (CAA), pentachlorophenol (PCP) and tetrachloroethylene (PCE) was discussed based on experimental data. All chemicals focused on here were removed well and stably at a removal efficiency of more than 98% even during starting operation and shock load operation. Chemicals in influent that exceeded biological degradation capacity was initially adsorbed on GAC and then gradually degraded, and hence the adsorptive capacity of GAC was regenerated biologically. These results proved that a biological activated carbon anaerobic reactor was effective for treatment of wastewater containing hazardous chemicals, especially for strongly absorbable chemicals, as well as readily degradable organic compounds at high concentration.


2017 ◽  
Vol 75 (9) ◽  
pp. 2034-2046 ◽  
Author(s):  
Adnan Khan ◽  
Samina Begum ◽  
Nauman Ali ◽  
Sabir Khan ◽  
Sajjad Hussain ◽  
...  

A chitosan magnetic membrane was prepared in order to confer magnetic properties to the membrane, which could be used for the removal of cations from aqueous solution. The crosslinked magnetic membrane was compared with pristine chitosan membrane in term of stability, morphology and cation adsorption capacity. The fabricated magnetic materials are thermally stable as shown by thermogravimetric curves. The membrane containing nickel magnetic particles (CHNiF-G) shows high thermal stability compared to the other membranes. The Fourier transform infrared spectroscopy showed successful preparation of chitosan magnetic membrane. Scanning electron microscopy micrographs showed the rough surface of the membrane with increased porosity. The prepared chitosan membranes were applied to cations of copper, nickel and lead in dilute aqueous solution. The chitosan membrane showed the following adsorption order for metallic cations: Cu2+ > Ni2+ > Pb2+, while CHNiF-G showed higher capacity, 3.51 mmol g−1 for copper, reflecting the improvement in adsorption capacity, since the amount of copper on pristine chitosan gave 1.40 mmol g−1. The time required for adsorption to reach to the equilibrium was 6 h for the selected cations using different chitosan membranes. The kinetic study showed that adsorption followed pseudo-second order kinetics. The most commonly used isotherm models, Freundlich, Langmuir and Temkin, were applied to experimental data using linear regression technique. However, The Temkin model fits better to experimental data.


Sign in / Sign up

Export Citation Format

Share Document