Experimental Investigation on Effect of High Pressure Coolant with Various Cutting Speed and Feed on Cutting Force and Tool Life in Cylindrical Turning of AISI 1060 Steel Using Carbide Insert

2015 ◽  
Author(s):  
Subha Shree Murugesan ◽  
Raguraman K ◽  
Vijaya Ganesa Velan Murugesan ◽  
Padmakumar Muthuswamy
2014 ◽  
Vol 984-985 ◽  
pp. 3-8 ◽  
Author(s):  
M. Subha Shree ◽  
M. Vijaya Ganesa Velan ◽  
M. Padmakumar

Providing sufficient provisions to transfer heat from the work-tool interface is a key to improve tool life and surface integrity. With the conventional flood cooling system where the coolant is directed towards the work-tool interface at very low pressure, there are possibilities for the coolant to get heated up and produce vapors which in turn insulates the cutting zone from the coolant. This reduces the purpose of coolant. Supplying coolant at very high pressure and very high velocity may provide the best control to reduce cutting temperature and tool wear and correspondingly increases tool life. This paper deals with an experimental investigation on the effect of high pressure coolant on surface finish in cylindrical turning of AISI 1060 Steel using tungsten carbide turning insert. Surface Roughness values are captured with different cutting speed and feed rates with high pressure and low pressure coolant supply. It is observed that there was a considerable improvement in surface finish with the use of high-pressure coolant (HPC) under various cutting speed and feed rate.


2015 ◽  
Vol 656-657 ◽  
pp. 226-230 ◽  
Author(s):  
Takahiro Katoh ◽  
Shigetoshi Ohmori ◽  
Takahiro Maeda ◽  
Takanori Kakumitsu ◽  
Koichi Okuda ◽  
...  

The high-pressure coolant supply cutting has attracted attention from a viewpoint of chip evacuation and tool life. In this study, the influence of high-pressure coolant supply on chip shape, cutting force and tool wear were investigated. The tests were carried out during external turning of stainless steel with cemented carbide cutting inserts. The results suggest that the length and radius of the chips got shorter with high-pressure coolant supply, especially supply pressure more than 5MPa. The cutting force was increase slightly with high-pressure coolant supply. However the thrust force was decrease. The uniform flank wear and crater wear were reduced and tool life was improved by high-pressure coolant supply.


2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


Author(s):  
E. O. Ezugwu ◽  
J. Bonney ◽  
W. F. Sales ◽  
R. B. da Silva

Usage of titanium alloys has increased since the past 50 years despite difficulties encountered during machining. In this study PCD tools were evaluated when machining Ti-6Al-4V alloy at high speed conditions under high pressure coolant supplies. Increase in coolant pressure tend to improve tool life and minimise adhesion of the work material on the cutting tool during machining. Adhesion can be accelerated by the susceptibility of titanium alloy to galling during machining.


Author(s):  
Rusdi Nur ◽  
MY Noordin ◽  
S Izman ◽  
D Kurniawan

Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.


Author(s):  
Aristides Magri ◽  
Anselmo Eduardo Diniz ◽  
Daniel Iwao Suyama

The automotive, aerospace and energy industries have lately increased their search for materials which must have high mechanical resistance/weight ratio and capability to maintain the mechanical properties in high temperatures and at corrosive environments in order to produce critical parts of their equipment. The nickel-based alloys are one type of materials which have been a good answer for this search. On the other hand, the very good mechanical properties of these alloys make their manufacturing very difficult, especially when machining processes are used. Among other problems in the machining of these alloys, due to the high mechanical resistance in high temperature, tool lives used to be much shorter than when steel alloys are machined, forcing cutting speeds to be much lower and, consequently, to have less productive processes. The main goal of this work was to test an alternative to increase tool life in the turning of Inconel 625 nickel-based alloy by the use of high-pressure coolant. This system was tested using different directions of the fluid flow (toward the rake face, toward the flank face and directing the fluid simultaneously toward these two tool faces) compared to the conventional way of applying fluid. The results show that the use of high-pressure coolant harms the notch wear development and, consequently, increases tool life with simultaneous improvement of workpiece surface roughness in some cases. However, the application of high-pressure coolant over both flank and rake faces at the same time did not provide any improvement.


2013 ◽  
Vol 770 ◽  
pp. 179-182
Author(s):  
Shu Bao Yang ◽  
Jiu Hua Xu ◽  
Yu Can Fu ◽  
Guo Hui Zhu

Milling tests were undertaken to analyze and compare the machinability of hydrogenated titanium alloy Ti6Al4V. Uncoated WC-Co tool inserts were used in the study. The feed and the depth of milling were maintained constant, and only the milling speed was varied because it is the most affecting parameter. Results showed that cutting force and tool life were greatly influenced by the contents of hydrogen. Tool life decreased at first and then increased gradually with the increase of hydrogen content, and the maximum magnitude decrease of tool life is about 0.2%H, meanwhile, the maximum tool life is about 0.5%H. However, with the increase of cutting speed, the favorable effect of hydrogen on the titanium alloy machinability would be weakened even disappear, therefore, 50-100m/min would be a suitable choice of cutting speed.


2018 ◽  
Vol 38 (1) ◽  
pp. 40-44
Author(s):  
Krzysztof Jarosz ◽  
Piotr Niesłony ◽  
Piotr Löschner

Abstract In this article, a novel approach to computer optimization of CNC toolpaths by adjustment of cutting speed vcand depth of cut apis presented. Available software works by the principle of adjusting feed rate on the basis of calculations and numerical simulation of the machining process. The authors wish to expand upon this approach by proposing toolpath optimization by altering two other basic process parameters. Intricacies and problems related totheadjustment of apand vcwere explained in the introductory part. Simulation of different variant of the same turning process with different parameter values were conducted to evaluate the effect of changes in depth of cut and cutting speed on process performance. Obtained results were investigated on the account of cutting force and tool life. The authors have found that depth of cut substantially affects cutting force, while the effect of cutting speed on it is minimal. An increase in both depth of cut and cutting speed affects tool life negatively, although the impact of cutting speed is much more severe. An increase in depth of cut allows for a more significant reduction of machining time, while affecting tool life less negatively. On the other hand, the adjustment of cutting speed helpsto reduce machining time without increasing cutting force component values and spindle load.


2019 ◽  
Vol 894 ◽  
pp. 158-163
Author(s):  
Tomohiko Kitamura ◽  
Ryutaro Tanaka ◽  
Yasuo Yamane ◽  
Katsuhiko Sekiya ◽  
Keiji Yamada

In conventional friction tests, it is difficult to realize the high pressure and high temperature conditions of the tool-work contact area in cutting. In this study, the friction properties of machining fluids were evaluated using a friction coefficient calculated from the cutting force in micro feed end milling. The finished surface roughness in conventional end milling decreased with the friction coefficient of machining fluids obtained by this method. Also, the cutting speed dependence of the friction coefficient, and its influence on the biting property of the cutting edge can be evaluated by this method.


Author(s):  
Sunil Dutta ◽  
Suresh Kumar Reddy Narala

In this paper, the machinability of a fabricated AM alloy (Mg-7 wt%Al-0.9 wt%Mn) has been examined. The novel AM alloy was subjected to turning using a systemized CNC setup. The input turning variables: feed ( f), cutting speed ( v), and depth of cut (DOC) were suitably altered to analyze effects on response variables such as cutting force ( Fc), cutting temperature ( T), and tool life ( TL). Subsequently, the microstructure characterization of the machined surface was done for validating the experimental results. The experimental results established the influence of input parameters on response variables. The cutting force was mostly dominated by DOC, and the cutting temperature was predominantly influenced by cutting speed. The SEM images exhibited the adverse effect of higher values of input parameters on the surface condition. The finest surface was observed at f: 0.1 mm/rev, DOC: 0.5 mm, and v: 115 m/min. Further, the analysis of tool life was done by assessing the flank wear; the measured data showed the significant influence of cutting speed on flank wear. The maximum tool life of 51 min was achieved at the lowest levels of three input parameters.


Sign in / Sign up

Export Citation Format

Share Document