Evaluating the use of high-pressure coolant in turning process of Inconel 625 nickel-based alloy

Author(s):  
Aristides Magri ◽  
Anselmo Eduardo Diniz ◽  
Daniel Iwao Suyama

The automotive, aerospace and energy industries have lately increased their search for materials which must have high mechanical resistance/weight ratio and capability to maintain the mechanical properties in high temperatures and at corrosive environments in order to produce critical parts of their equipment. The nickel-based alloys are one type of materials which have been a good answer for this search. On the other hand, the very good mechanical properties of these alloys make their manufacturing very difficult, especially when machining processes are used. Among other problems in the machining of these alloys, due to the high mechanical resistance in high temperature, tool lives used to be much shorter than when steel alloys are machined, forcing cutting speeds to be much lower and, consequently, to have less productive processes. The main goal of this work was to test an alternative to increase tool life in the turning of Inconel 625 nickel-based alloy by the use of high-pressure coolant. This system was tested using different directions of the fluid flow (toward the rake face, toward the flank face and directing the fluid simultaneously toward these two tool faces) compared to the conventional way of applying fluid. The results show that the use of high-pressure coolant harms the notch wear development and, consequently, increases tool life with simultaneous improvement of workpiece surface roughness in some cases. However, the application of high-pressure coolant over both flank and rake faces at the same time did not provide any improvement.

2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


Author(s):  
E. O. Ezugwu ◽  
J. Bonney ◽  
W. F. Sales ◽  
R. B. da Silva

Usage of titanium alloys has increased since the past 50 years despite difficulties encountered during machining. In this study PCD tools were evaluated when machining Ti-6Al-4V alloy at high speed conditions under high pressure coolant supplies. Increase in coolant pressure tend to improve tool life and minimise adhesion of the work material on the cutting tool during machining. Adhesion can be accelerated by the susceptibility of titanium alloy to galling during machining.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 408 ◽  
Author(s):  
Doriana D'Addona ◽  
Sunil Raykar

This paper presents a finite-element modeling (FEM) of tool temperature distribution during high pressure coolant assisted turning of Inconel 718, which belongs to the heat resistance superalloys of the Nickel-Chromium family. Machining trials were conducted under four machining conditions: dry, conventional wet machining, high pressure coolant at 50 bar, and high pressure coolant at 80 bar. Temperature during machining plays a very important role in the overall performance of machining processes. Since in the current investigation a high pressure coolant jet was supplied in the cutting zone between tool and work material, it was a very difficult task to measure the tool temperature correctly. Thus, FEM was used as a modeling tool to predict tool temperature. The results of the modeling showed that the temperature was considerably influenced by coolant pressure: the high pressure jet was able to penetrate into the interface between tool and work material, thus providing both an efficient cooling and effective lubricating action.


2014 ◽  
Vol 984-985 ◽  
pp. 3-8 ◽  
Author(s):  
M. Subha Shree ◽  
M. Vijaya Ganesa Velan ◽  
M. Padmakumar

Providing sufficient provisions to transfer heat from the work-tool interface is a key to improve tool life and surface integrity. With the conventional flood cooling system where the coolant is directed towards the work-tool interface at very low pressure, there are possibilities for the coolant to get heated up and produce vapors which in turn insulates the cutting zone from the coolant. This reduces the purpose of coolant. Supplying coolant at very high pressure and very high velocity may provide the best control to reduce cutting temperature and tool wear and correspondingly increases tool life. This paper deals with an experimental investigation on the effect of high pressure coolant on surface finish in cylindrical turning of AISI 1060 Steel using tungsten carbide turning insert. Surface Roughness values are captured with different cutting speed and feed rates with high pressure and low pressure coolant supply. It is observed that there was a considerable improvement in surface finish with the use of high-pressure coolant (HPC) under various cutting speed and feed rate.


2017 ◽  
Vol 25 (3) ◽  
pp. 158-162
Author(s):  
Alberto Jiménez ◽  
Fernando Boto ◽  
Itziar Irigoien ◽  
Basilio Sierra ◽  
Alfredo Suarez

Abstract Stability detection in machining processes is an essential component for the design of efficient machining processes. Automatic methods are able to determine when instability is happening and prevent possible machine failures. In this work a variety of methods are proposed for detecting stability anomalies based on the measured forces in the radial turning process of superalloys. Two different methods are proposed to determine instabilities. Each one is tested on real data obtained in the machining of Waspalloy, Haynes 282 and Inconel 718. Experimental data, in both Conventional and High Pressure Coolant (HPC) environments, are set in four different states depending on materials grain size and Hardness (LGA, LGS, SGA and SGS). Results reveal that PCA method is useful for visualization of the process and detection of anomalies in online processes.


2009 ◽  
Vol 618-619 ◽  
pp. 89-92 ◽  
Author(s):  
Suresh Palanisamy ◽  
Dean Townsend ◽  
M. Scherrer ◽  
Robert Andrews ◽  
Matthew S. Dargusch

Removal of heat from the cutting zone is critical when machining titanium. The application of high pressure coolant during turning of titanium results in longer tool life and better surface finish. In this paper, the effect of the application of cutting fluid at high pressure during the milling of titanium alloys is presented.


1970 ◽  
Vol 39 (2) ◽  
pp. 71-77 ◽  
Author(s):  
M Kamruzzaman ◽  
NR Dhar

To avoid surface distortion and to improve tool life, machining of alloy steel and other hard materials under high speed-feed condition requires instant heat transfer from the work-tool interface where the intensity of cutting temperature is the maximum. Conventional cooling is completely unable and other special techniques like MQL and cryogenic cooling are not suitable in context of product quality and cost effectiveness. Supply of high-pressure coolant (HPC) with high velocity may provide the best control to reduce cutting temperature and tool wear as well as increase tool life. This paper deals with an experimental investigation on the effect of high-pressure coolant on temperature, tool wear, surface roughness and dimensional deviation in turning 42CrMo4 steel by uncoated carbide inserts and comparing it with dry condition. It is observed that the cutting temperature and tool wear is reduced, tool life is increased, surface finish is improved, and dimensional deviation is decreased with the use of high-pressure coolant. Keywords: High-pressure coolant (HPC), Alloy steel, Temperature, Wear and Product quality. doi:10.3329/jme.v39i2.1849 Journal of Mechanical Engineering, Vol. ME39, No. 2, Dec. 2008 71-77


2015 ◽  
Vol 656-657 ◽  
pp. 226-230 ◽  
Author(s):  
Takahiro Katoh ◽  
Shigetoshi Ohmori ◽  
Takahiro Maeda ◽  
Takanori Kakumitsu ◽  
Koichi Okuda ◽  
...  

The high-pressure coolant supply cutting has attracted attention from a viewpoint of chip evacuation and tool life. In this study, the influence of high-pressure coolant supply on chip shape, cutting force and tool wear were investigated. The tests were carried out during external turning of stainless steel with cemented carbide cutting inserts. The results suggest that the length and radius of the chips got shorter with high-pressure coolant supply, especially supply pressure more than 5MPa. The cutting force was increase slightly with high-pressure coolant supply. However the thrust force was decrease. The uniform flank wear and crater wear were reduced and tool life was improved by high-pressure coolant supply.


Sign in / Sign up

Export Citation Format

Share Document