scholarly journals 2P172 Visualisation of conformational changes of the catalytic subunit beta in F_1-ATPase at the single-molecule level

2005 ◽  
Vol 45 (supplement) ◽  
pp. S162
Author(s):  
T. Masaike ◽  
M. Yoshida ◽  
K. Oiwa ◽  
T. Nishizaka
2019 ◽  
Vol 116 (23) ◽  
pp. 11247-11252 ◽  
Author(s):  
Toru Kondo ◽  
Jesse B. Gordon ◽  
Alberta Pinnola ◽  
Luca Dall’Osto ◽  
Roberto Bassi ◽  
...  

Biological systems are subjected to continuous environmental fluctuations, and therefore, flexibility in the structure and function of their protein building blocks is essential for survival. Protein dynamics are often local conformational changes, which allows multiple dynamical processes to occur simultaneously and rapidly in individual proteins. Experiments often average over these dynamics and their multiplicity, preventing identification of the molecular origin and impact on biological function. Green plants survive under high light by quenching excess energy, and Light-Harvesting Complex Stress Related 1 (LHCSR1) is the protein responsible for quenching in moss. Here, we expand an analysis of the correlation function of the fluorescence lifetime by improving the estimation of the lifetime states and by developing a multicomponent model correlation function, and we apply this analysis at the single-molecule level. Through these advances, we resolve previously hidden rapid dynamics, including multiple parallel processes. By applying this technique to LHCSR1, we identify and quantitate parallel dynamics on hundreds of microseconds and tens of milliseconds timescales, likely at two quenching sites within the protein. These sites are individually controlled in response to fluctuations in sunlight, which provides robust regulation of the light-harvesting machinery. Considering our results in combination with previous structural, spectroscopic, and computational data, we propose specific pigments that serve as the quenching sites. These findings, therefore, provide a mechanistic basis for quenching, illustrating the ability of this method to uncover protein function.


2018 ◽  
Author(s):  
Guanzhong Ma ◽  
Hao Zhu ◽  
Zijian Wan ◽  
Yunze Yang ◽  
Shaopeng Wang ◽  
...  

AbstractProtein analysis has relied on electrophoresis, mass spectroscopy and immunoassay, which separate, detect and identify proteins based on the size, charge, mobility and binding to antibodies. However, measuring these quantities at the single molecule level has not been possible. We tether a protein to a surface with a flexible polymer, drive the protein into mechanical oscillation with an alternating electric field, and image the protein oscillation with a near field imaging method, from which we determine the size, charge, mobility of the protein. We also measure binding of antibodies to single proteins and ligand binding-induced conformational changes in single proteins. This work provides new capabilities for protein analysis and disease biomarker detection at the single molecule level.


2018 ◽  
Vol 115 (41) ◽  
pp. 10333-10338 ◽  
Author(s):  
Yi Ruan ◽  
Kevin Kao ◽  
Solène Lefebvre ◽  
Arin Marchesi ◽  
Pierre-Jean Corringer ◽  
...  

Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated, cation-selective channel, is a prokaryotic homolog of the pentameric Cys-loop receptor ligand-gated ion channel family. Despite large changes in ion conductance, small conformational changes were detected in X-ray structures of detergent-solubilized GLIC at pH 4 (active/desensitized state) and pH 7 (closed state). Here, we used high-speed atomic force microscopy (HS-AFM) combined with a buffer exchange system to perform structural titration experiments to visualize GLIC gating at the single-molecule level under native conditions. Reference-free 2D classification revealed channels in multiple conformational states during pH gating. We find changes of protein–protein interactions so far elusive and conformational dynamics much larger than previously assumed. Asymmetric pentamers populate early stages of activation, which provides evidence for an intermediate preactivated state.


2011 ◽  
Vol 39 (2) ◽  
pp. 595-599 ◽  
Author(s):  
Joshua P. Gill ◽  
Jun Wang ◽  
David P. Millar

DNA polymerases are essential enzymes responsible for replication and repair of DNA in all organisms. To replicate DNA with high fidelity, DNA polymerases must select the correct incoming nucleotide substrate during each cycle of nucleotide incorporation, in accordance with the templating base. When an incorrect nucleotide is sometimes inserted, the polymerase uses a separate 3′→5′ exonuclease to remove the misincorporated base (proofreading). Large conformational rearrangements of the polymerase–DNA complex occur during both the nucleotide incorporation and proofreading steps. Single-molecule fluorescence spectroscopy provides a unique tool for observation of these dynamic conformational changes in real-time, without the need to synchronize a population of DNA–protein complexes.


2014 ◽  
Vol 67 (5) ◽  
pp. 686 ◽  
Author(s):  
Lee C. Speight ◽  
Moumita Samanta ◽  
E. James Petersson

Fluorescence methods allow one to monitor protein conformational changes, protein–protein associations, and proteolysis in real time, at the single molecule level and in living cells. The information gained in such experiments is a function of the spectroscopic techniques used and the strategic placement of fluorophore labels within the protein structure. There is often a trade-off between size and utility for fluorophores, whereby large size can be disruptive to the protein’s fold or function, but valuable characteristics, such as visible wavelength absorption and emission or brightness, require sizable chromophores. Three major types of fluorophore readouts are commonly used: (1) Förster resonance energy transfer (FRET); (2) photoinduced electron transfer (PET); and (3) environmental sensitivity. This review focuses on those probes small enough to be incorporated into proteins during ribosomal translation, which allows the probes to be placed on the interiors of proteins as they are folded during synthesis. The most broadly useful method for doing so is site-specific unnatural amino acid (UAA) mutagenesis. We discuss the use of UAA probes in applications relying on FRET, PET, and environmental sensitivity. We also briefly review other methods of protein labelling and compare their relative merits to UAA mutagenesis. Finally, we discuss small probes that have thus far been used only in synthetic peptides, but which have unusual value and may be candidates for incorporation using UAA methods.


Nanoscale ◽  
2019 ◽  
Vol 11 (42) ◽  
pp. 19933-19942
Author(s):  
Fabiola A. Gutiérrez-Mejía ◽  
Christian P. Moerland ◽  
Leo J. van IJzendoorn ◽  
Menno W. J. Prins

Protein conformational changes are essential to biological function, and the heterogeneous nature of the corresponding protein states provokes an interest to measure conformational changes at the single molecule level.


2013 ◽  
Vol 41 (1) ◽  
pp. 368-373 ◽  
Author(s):  
Andreas Gietl ◽  
Dina Grohmann

The genetic information of every living organism is stored in its genomic DNA that is perceived as a chemically stable and robust macromolecule. But at the same time, to fulfil its functions properly, it also needs to be highly dynamic and flexible. This includes partial melting of the double helix or compaction and bending of the DNA often brought about by protein factors that are able to interact with DNA stretches in a specific and non-specific manner. The conformational changes in the DNA need to be understood in order to describe biological systems in detail. As these events play out on the nanometre scale, new biophysical approaches have been employed to monitor conformational changes in this regime at the single-molecule level. Focusing on transcription factor action on promoter DNA, we discuss how current biophysical techniques are able to quantitatively describe this molecular process.


2016 ◽  
Vol 193 ◽  
pp. 471-485 ◽  
Author(s):  
Robert P. Johnson ◽  
Rukshan T. Perera ◽  
Aaron M. Fleming ◽  
Cynthia J. Burrows ◽  
Henry S. White

Unique, two-state modulating current signatures are observed when a cytosine–cytosine mismatch pair is confined at the 2.4 nm latch constriction of the α-hemolysin (αHL) nanopore. We have previously speculated that the modulation is due to base flipping at the mismatch site. Base flipping is a biologically significant mechanism in which a single base is rotated out of the DNA helical stack by 180°. It is the mechanism by which enzymes are able to access bases for repair operations without disturbing the global structure of the helix. Here, temperature dependent ion channel recordings of individual double-stranded DNA duplexes inside αHL are used to derive thermodynamic (ΔH, ΔS) and kinetic (EA) parameters for base flipping of a cytosine at an unstable cytosine–cytosine mismatch site. The measured activation energy for flipping a cytosine located at the latch of αHL out of the helix (18 ± 1 kcal mol−1) is comparable to that previously reported for base flipping at mismatch sites from NMR measurements and potential mean force calculations. We propose that the αHL nanopore is a useful tool for measuring conformational changes in dsDNA at the single molecule level.


2006 ◽  
Vol 78 (12) ◽  
pp. 2261-2266 ◽  
Author(s):  
J. Hofkens ◽  
T. D. M. Bell ◽  
A. Stefan ◽  
E. Fron ◽  
K. Müllen ◽  
...  

Evidence for intramolecular photoinduced electron transfer (ET) in synthetic systems consisting of a triphenylamine-perylenediimide donor-acceptor dendrimer or a triphenylamine-peryleneimide dendrimer at the ensemble and single-molecule (SM) level is presented. Moreover, for the first time a direct observation of the forward as well as the backward ET step is made in a single emitting entity. Fluctuations in the values of the rate constants for forward and backward ET were observed, induced by the local environment as well as by conformational changes of the dendrimer itself. The results obtained in a weakly coupled system can also be extended to a strongly coupled donor-acceptor system based on peryleneimide and penta-phenylene.


Sign in / Sign up

Export Citation Format

Share Document