scholarly journals On the functioning mechanism of an ATP-driven molecular motor

Author(s):  
Masahiro Kinoshita
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


2021 ◽  
Vol 217 (1) ◽  
pp. 54-68
Author(s):  
Feng Han ◽  
Zhi Yan ◽  
Minjia Wang ◽  
Tong Li ◽  
Jiaqing Li ◽  
...  

2010 ◽  
Vol 395 (5) ◽  
pp. 966-982 ◽  
Author(s):  
Nisha C. Kalarickal ◽  
Amitabh Ranjan ◽  
B. Sudha Kalyani ◽  
Megha Wal ◽  
Ranjan Sen

2021 ◽  
Vol 22 (13) ◽  
pp. 6709
Author(s):  
Xiao-Xuan Shi ◽  
Peng-Ye Wang ◽  
Hong Chen ◽  
Ping Xie

The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yijun Zheng ◽  
Mitchell K. L. Han ◽  
Renping Zhao ◽  
Johanna Blass ◽  
Jingnan Zhang ◽  
...  

AbstractProgress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively “pull” on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.


2008 ◽  
Vol 95 (2) ◽  
pp. 720-728 ◽  
Author(s):  
Yves Lecarpentier ◽  
Nicolas Vignier ◽  
Patricia Oliviero ◽  
Aziz Guellich ◽  
Lucie Carrier ◽  
...  

2016 ◽  
Vol 1 (17) ◽  
pp. 5547-5553 ◽  
Author(s):  
Suvendu Paul ◽  
Monaj Karar ◽  
Swastika Mitra ◽  
Selim A. Sher Shah ◽  
Tapas Majumdar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document