scholarly journals Expression of mouse small interfering RNAs in lettuce using artificial microRNA technology

BioTechniques ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 214-218 ◽  
Author(s):  
Tayebeh Kakeshpour ◽  
Tej Man Tamang ◽  
Woojun D Park ◽  
Murli Manohar ◽  
Jian Yang ◽  
...  

Artificial miRNA technology enables the generation of siRNAs to regulate the expression of targeted genes. However, the application of siRNAs to alter gene expression is challenging due to their instability and requires a means to efficiently deliver siRNAs into the host. Here, we report that the siRNAs targeted to animal mRNAs can be heterologously expressed and stably produced in lettuce. We have modified rice miRNA precursors to produce siRNAs in lettuce with the potential to target mRNAs of mouse complement 3 ( C3) and coagulation factor 7 ( CF7). Expression of primary and mature siRNAs in the transgenic lettuce lines was confirmed via Sanger sequencing. Our study demonstrates an applicable tool to alter gene expression in the targeted host and has potential utility in siRNA-based oral therapeutics.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 991
Author(s):  
Fernanda Costa Brandão Berti ◽  
Sara Cristina Lobo-Alves ◽  
Camila de Freitas Oliveira-Toré ◽  
Amanda Salviano-Silva ◽  
Karen Brajão de Oliveira ◽  
...  

MicroRNAs (miRNAs) regulate gene expression by binding to complementary sequences within target mRNAs. Apart from working ‘solo’, miRNAs may interact in important molecular networks such as competing endogenous RNA (ceRNA) axes. By competing for a limited pool of miRNAs, transcripts such as long noncoding RNAs (lncRNAs) and mRNAs can regulate each other, fine-tuning gene expression. Several ceRNA networks led by different lncRNAs—described here as lncRNA-mediated ceRNAs—seem to play essential roles in cervical cancer (CC). By conducting an extensive search, we summarized networks involved in CC, highlighting the major impacts of such dynamic molecular changes over multiple cellular processes. Through the sponging of distinct miRNAs, some lncRNAs as HOTAIR, MALAT1, NEAT1, OIP5-AS1, and XIST trigger crucial molecular changes, ultimately increasing cell proliferation, migration, invasion, and inhibiting apoptosis. Likewise, several lncRNAs seem to be a sponge for important tumor-suppressive miRNAs (as miR-140-5p, miR-143-3p, miR-148a-3p, and miR-206), impairing such molecules from exerting a negative post-transcriptional regulation over target mRNAs. Curiously, some of the involved mRNAs code for important proteins such as PTEN, ROCK1, and MAPK1, known to modulate cell growth, proliferation, apoptosis, and adhesion in CC. Overall, we highlight important lncRNA-mediated functional interactions occurring in cervical cells and their closely related impact on cervical carcinogenesis.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 361
Author(s):  
Myeongwoo Jung ◽  
Eun-Kyung Lee

HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.


Nature ◽  
2008 ◽  
Vol 453 (7194) ◽  
pp. 534-538 ◽  
Author(s):  
Oliver H. Tam ◽  
Alexei A. Aravin ◽  
Paula Stein ◽  
Angelique Girard ◽  
Elizabeth P. Murchison ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Gu ◽  
Ying Sun ◽  
Xiong Zheng ◽  
Jin Ma ◽  
Xiao-Ying Hu ◽  
...  

Gastric cancer is one of the common malignant tumors worldwide. Increasing studies have indicated that circular RNAs (circRNAs) play critical roles in the cancer progression and have shown great potential as useful markers and therapeutic targets. However, the precise mechanism and functions of most circRNAs are still unknown in gastric cancer. In the present study, we performed a microarray analysis to detect circRNA expression changes between tumor samples and adjacent nontumor samples. The miRNA expression profiles were obtained from the National Center of Biotechnology Information Gene Expression Omnibus (GEO). The differentially expressed circRNAs and miRNAs were identified through fold change filtering. The interactions between circRNAs and miRNAs were predicted by Arraystar’s home-made miRNA target prediction software. After circRNA-related miRNAs and dysregulated miRNAs were intersected, 23 miRNAs were selected. The target mRNAs of miRNAs were predicted by TarBase v7.0. Gene ontology (GO) enrichment analysis and pathway analysis were performed using standard enrichment computational methods for the target mRNAs. The results of pathway analysis showed that p53 signaling pathway and hippo signal pathway were significantly enriched and CCND2 was a cross-talk gene associated with them. Finally, a circRNA-miRNA-mRNA regulation network was constructed based on the gene expression profiles and bioinformatics analysis results to identify hub genes and hsa_circRNA_101504 played a central role in the network.


Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 2856-2861 ◽  
Author(s):  
Hongmin Sun ◽  
Tony L. Yang ◽  
Angela Yang ◽  
Xixi Wang ◽  
David Ginsburg

Abstract Coagulation factor V (FV) is a central regulator of the coagulation cascade. Circulating FV is found in plasma and within platelet α granules. The specific functions of these distinct FV pools are uncertain. We now report the generation of transgenic mice with FV gene expression restricted to either the liver or megakaryocyte/platelet lineage using bacterial artificial chromosome (BAC) constructs. Six of 6 independent albumin BAC transgenes rescue the neonatal lethal hemorrhage of FV deficiency. Rescued mice all exhibit liver-specific Fv expression at levels ranging from 6% to 46% of the endogenous Fv gene, with no detectable FV activity within the platelet pool. One of the 3 Pf4 BAC transgenes available for analysis also rescues the lethal FV null phenotype, with FV activity restricted to only the platelet pool (approximately 3% of the wild-type FV level). FV-null mice rescued by either the albumin or Pf4 BAC exhibit nearly normal tail bleeding times. These results demonstrate that Fv expression in either the platelet or plasma FV pool is sufficient for basal hemostasis. In addition, these findings indicate that the murine platelet and plasma FV pools are biosynthetically distinct, in contrast to a previous report demonstrating a plasma origin for platelet FV in humans.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Wenshuai Liu ◽  
Hanxing Tong ◽  
Chenlu Zhang ◽  
Rongyuan Zhuang ◽  
He Guo ◽  
...  

Abstract Background Treating patients with advanced sarcomas is challenging due to great histologic diversity among its subtypes. Leiomyosarcoma (LMS) and de-differentiated liposarcoma (DDLPS) are two common and aggressive subtypes of soft tissue sarcoma (STS). They differ significantly in histology and clinical behaviors. However, the molecular driving force behind the difference is unclear. Methods We collected 20 LMS and 12 DDLPS samples and performed whole exome sequencing (WES) to obtain their somatic mutation profiles. We also performed RNA-Seq to analyze the transcriptomes of 8 each of the LMS and DDLPS samples and obtained information about differential gene expression, pathway enrichment, immune cell infiltration in tumor microenvironment, and chromosomal rearrangement including gene fusions. Selected gene fusion events from the RNA-seq prediction were checked by RT-PCR in tandem with Sanger sequencing. Results We detected loss of function mutation and deletion of tumor suppressors mostly in LMS, and oncogene amplification mostly in DDLPS. A focal amplification affecting chromosome 12q13–15 region which encodes MDM2, CDK4 and HMGA2 is notable in DDLPS. Mutations in TP53, ATRX, PTEN, and RB1 are identified in LMS but not DDLPS, while mutation of HERC2 is only identified in DDLPS but not LMS. RNA-seq revealed overexpression of MDM2, CDK4 and HMGA2 in DDLPS and down-regulation of TP53 and RB1 in LMS. It also detected more fusion events in DDLPS than LMS (4.5 vs. 1, p = 0.0195), and the ones involving chromosome 12 in DDLPS stand out. RT-PCR and Sanger sequencing verified the majority of the fusion events in DDLPS but only one event in LMS selected to be tested. The tumor microenvironmental signatures are highly correlated with histologic types. DDLPS has more endothelial cells and fibroblasts content than LMS. Conclusions Our analysis revealed different recurrent genetic variations in LMS and DDLPS including simultaneous upregulation of gene expression and gene copy number amplification of MDM2 and CDK4. Up-regulation of tumor related genes is favored in DDLPS, while loss of suppressor function is favored in LMS. DDLPS harbors more frequent fusion events which can generate neoepitopes and potentially targeted by personalized immune treatment.


Parasitology ◽  
2019 ◽  
Vol 147 (8) ◽  
pp. 855-864
Author(s):  
Collette Britton ◽  
Roz Laing ◽  
Eileen Devaney

AbstractSmall RNAs are important regulators of gene expression. They were first identified in Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways are functionally conserved across diverse organisms. Availability of genome data for an increasing number of parasitic nematodes has enabled bioinformatic identification of small RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA sequencing and microarray analysis. In this review we describe what is known of the three main small RNA classes in parasitic nematodes – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) – and their proposed functions. miRNAs regulate development in C. elegans and the temporal expression of parasitic nematode miRNAs suggest modulation of target gene levels as parasites develop within the host. miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs and siRNAs in suppressing target genes, including transposable elements, are also reviewed. Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors and mimics will continue to advance understanding of small RNA functions within the parasite and at the host–parasite interface.


2006 ◽  
Vol 80 (3) ◽  
pp. 1376-1384 ◽  
Author(s):  
Oscar Aparicio ◽  
Nerea Razquin ◽  
Mikel Zaratiegui ◽  
Iñigo Narvaiza ◽  
Puri Fortes

ABSTRACT Posttranscriptional gene silencing allows sequence-specific control of gene expression. Specificity is guaranteed by small antisense RNAs such as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Functional miRNAs derive from longer double-stranded RNA (dsRNA) molecules that are cleaved to pre-miRNAs in the nucleus and are transported by exportin 5 (Exp 5) to the cytoplasm. Adenovirus-infected cells express virus-associated (VA) RNAs, which are dsRNA molecules similar in structure to pre-miRNAs. VA RNAs are also transported by Exp 5 to the cytoplasm, where they accumulate. Here we show that small RNAs derived from VA RNAs (svaRNAs), similar to miRNAs, can be found in adenovirus-infected cells. VA RNA processing to svaRNAs requires neither viral replication nor viral protein expression, as evidenced by the fact that svaRNA accumulation can be detected in cells transfected with VA sequences. svaRNAs are efficiently bound by Argonaute 2, the endonuclease of the RNA-induced silencing complex, and behave as functional siRNAs, in that they inhibit the expression of reporter genes with complementary sequences. Blocking svaRNA-mediated inhibition affects efficient adenovirus production, indicating that svaRNAs are required for virus viability. Thus, svaRNA-mediated silencing could represent a novel mechanism used by adenoviruses to control cellular or viral gene expression.


Sign in / Sign up

Export Citation Format

Share Document